
KIT – The Research University in the Helmholtz Association

Institute of Applied Informatics

and Formal Description

Methods (AIFB)

Web Science

SQL2SOLID - Securely Exposing Legacy

SQL Data as Virtual RDF Graphs

Seminar: Linked Data and the Semantic Web

Authors: Lukas Kubelka and Benjamin Meyjohann

KIT – The Research University in the Helmholtz Association

Fig. 1: Proposed

Solution Architecture

We leverage the Solid protocol for access control

and employ R2RML mappings for data conversion.

This method enables parallel operation of both

legacy and linked systems, crucial for gradual

migration without disrupting current

operations.

To address the challenge of converting and

managing data, we considered two primary

strategies: materialization, where data is pre-

converted and stored, and virtuali-

zation, which converts data

on-demand. We chose virtualization

due to its real-time

synchronization capa-

bilities between lega-

cy and linked data,

minimizing storage

requirements and

avoiding the need for frequent

re-materialization in response to

data updates.

For the practical implementation of our

theoretical framework, we selected PostgreSQL as

our relational database for its open-source nature

and widespread adoption. Ontop was chosen as the

virtual knowledge graph system for its ability to

provide a SPARQL endpoint for just-in-time data

transformation, interfacing seamlessly with both

PostgreSQL and the Solid protocol. The Solid

Community Server was selected to implement the

Solid protocol, offering a comprehensive ecosystem

for secure access control over linked data. The

resulting architecture of our solution can be seen in

Fig. 1.

The Solid server configuration is critical for routing

requests to the appropriate data sources. We use

RegexRule configurations to direct all RDF graph

store queries to the SPARQL endpoint and other

requests to the server’s file

storage. This ensures that

requests for RDF data are

processed through the

virtualization layer,

maintaining real-time

data fidelity and applying

the necessary access

controls as defined by the

R2RML mappings as shown in

Fig. 2. Additionally, the R2RML

mappings account for Solid’s

requirement of meta-resources for each

resource accessed.

By doing so, we seamlessly translate existing

database roles into ACL resources, minimizing user

effort in the migration process.

This method integrates PostgreSQL databases with

the capabilities of Ontop, providing an accessible

solution for exposing legacy relational data as

linked data within the Solid ecosystem.

:TablesPrivilegesView rr:sqlQuery """
select *, (
case privilege_type
when 'SELECT' then 'Read’
end

) as access_mode, (
case grantee
when 'soliduser' then

'https://uzquk.solid.aifb.kit.edu/
public/groups.ttl#soliduser’

end
) as access_subject
from information_schema.table_privileges
where table_schema = 'public';

""" .

:TablesAclMap a rr:TriplesMap;
rr:logicalTable :TablesPrivilegesView;
rr:subjectMap [
rr:template "http://localhost:3000/rdf-graph-

store/{table_name}/.acl";
rr:class acl:Authorization;
rr:graphMap [
rr:template "http://localhost:3000/rdf-graph-

store/{table_name}/.acl"
]

];
rr:predicateObjectMap [
rr:predicate acl:agentGroup;
rr:objectMap [
rr:column "access_subject";
rr:termType rr:IRI

]
];
rr:predicateObjectMap [
rr:predicate acl:mode;
rr:objectMap [
rr:template
"http://www.w3.org/ns/auth/acl#{access_mode}";

]
];
rr:predicateObjectMap [
rr:predicate acl:accessTo;
rr:objectMap [
rr:template "http://localhost:3000/rdf-graph-

store/{table_name}/“
]

];
rr:predicateObjectMap [
rr:predicate acl:default;
rr:objectMap [rr:template "./"]

] .

:RDFGraphStoreView rr:sqlQuery """
SELECT * FROM information_schema.tables WHERE table_schema =
'public';
""" .

:TablesMetadataMap a rr:TriplesMap;
rr:logicalTable :RDFGraphStoreView;
rr:subjectMap [
rr:template "http://localhost:3000/rdf-graph-

store/{table_name}/";
rr:graphMap [
rr:template "meta:http://localhost:3000/rdf-graph-

store/{table_name}/"
]

];
rr:predicateObjectMap [
rr:predicate rdf:type;
rr:object ldp:Table

];
rr:predicateObjectMap [
rr:predicate rdf:type;
rr:object ldp:BasicTable

];
rr:predicateObjectMap [
rr:predicate rdf:type;
rr:object ldp:Resource

] .

:TablesAclMetadataMap a rr:TriplesMap;
rr:logicalTable :RDFGraphStoreView;
rr:subjectMap [
rr:template "http://localhost:3000/rdf-graph-

store/{table_name}/.acl";
rr:graphMap [
rr:template "meta:http://localhost:3000/rdf-graph-

store/{table_name}/.acl"
]

];
rr:predicateObjectMap [
rr:predicate rdf:type;
rr:objectMap [
rr:constant rdf:Resource

]
] .

Introduction

Approach

Evaluation Conclusion

Fig. 2: The most important R2RML Mappings

SQL query used by the

:TablesACLMap to grant read

access to the WebID when

the RDB role ‘soliduser’ has

SELECT rights. Returns a

row for each table.

Mapping that creates

an ACL resource for

every table in the

RDB. The resource

contains WebIDs and

their access rights.

This will be dynamically

replaced with the

WebID from the SQL

query for each table.

This is dynamically replaced by the

access mode from the SQL query

for each table. Currently, only ‘Read’

can be used.

‘{table_name}’ is dynamically

replaced by the table name

of each query row.

SQL query used by

mappings for metadata

resources that are required

by Solid Community Server.

Metadata mapping for

the resource itself.

Solid Community Server

always requests metadata

resources using ‘meta:’.

Solid

Community

Server requests

ACL resources

using ‘.acl’.

Metadata mapping for

the ACL resource.

In retrospective, our approach for migration of legacy

relational data to linked data has revealed some

promising findings for security and enhanced

accessibility. It allows for gradual migration and does

not require a clear cut because of its capability to

keep the data itself in addition to the role-based

access control systems of RDBs and Solid’s WebIDs

in sync.

Nonetheless, there are still issues open for future

research. These include writing and updating

operations at the linked data level synchronizing to

the legacy relational data. Furthermore, we expect a

script for generation of the R2RML mappings to be

the next big step towards even more accessibility.

Our work integrates Role-based Access Control

(RBAC) with Solid WebIDs, requiring minimal

additional user knowledge and maintaining per-

table access. However, it lacks the more fine-

grained control of row-level-security and per-

resource access control of Solid.

By employing virtualization over materialization,

it significantly reduces storage demands,

guarantees real-time synchronization between

legacy and linked data, and ensures accessibility

by embedding the data in the Solid ecosystem,

making it well-suited especially for step-by-step

adaptation from legacy relational data to linked

data when running both systems in parallel.

We aim to propose an accessible and adaptable approach for integrating legacy relational data sources

into the Social Linked Data (Solid) ecosystem. Solid establishes a holistic data ecosystem for reading

and writing linked data in a secure and privacy respecting manner.

For that we utilize the Ontology-based Data Access framework and provide R2RML mappings that enable

this transition. Next to the mappings of the actual data, our main contribution lies in the mapping of Role-

based Access Control (RBAC) policies to Web Access Control (WAC) ACL resources.

Most medium-sized and large organizations deal with the issue of data silos. These silos, while containing

semantically related data, often lead to redundancies and inconsistencies, posing a significant challenge in

data integration.

The desirable target state would be an integrated data ecosystem, enabling organizations to make informed

decisions based on accurate and up-to-date information. A key aspect of this challenge is the integration of

Identity and Access Management (IAM), which in legacy systems is typically performed separately for each

data source.

	Folie 1

