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Abstract 

Testing of graphical user interfaces of mobile applications is important to ensure their functionality and 

usability. However, manual testing is time-consuming and expensive. This could be solved by automating 

the testing process. Previous frameworks for automation rely on random actions or pattern recognition. 

Both types are not efficient, because the former is missing a structured approach at testing and the latter 

must often be revised if the graphical user interface is modified. In this thesis, we utilize deep learning to 

make recognition robust to changes in the graphical user interface. For training, we use an automatically 

generated and labeled dataset. This allows for fast and accurate labeling resulting in improved data quality 

compared to manual labeling. Additionally, recognition is performed on images of the mobile application 

captured by camera and not on screenshots. That way, testing can be performed end-to-end. The results are 

hard to compare to previous works because of the different ways of capturing the mobile application. While 

the results look promising and our approach recognizes many elements of graphical user interfaces, the 

benefit for automated testing is limited because many complex elements are not yet recognized well enough.
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1  INTRODUCTION 

 

1. Introduction 

For both physical products as well as software, testing is an important part of the development process since 

it has the potential to ensure and improve usability, functionality, and possibly even safety of a product. All 

of which can lead to more customers and thus additional revenue. 

However, software development differs from the development of physical goods. While the latter results in 

one final product, development of software usually happens iteratively, and software updates are published 

repeatedly. Hence, all testing of software is generally not only done once but must be repeated continuously 

while adapting to the changes that have been made. This makes manual testing a task that is time-consuming 

and inefficient. 

Since smartphones are very popular nowadays (Statista 2022a), there exist many mobile applications and a 

lot of people use them for hours on a daily basis (Statista 2022b). Therefore, testing of mobile applications 

can improve satisfaction for many customers (Kong et al. 2021). Interaction between the human and a 

mobile application mainly relies on graphical user interfaces (GUIs). Because of this, testing of GUIs is an 

important part of the testing process. 

Apart from this, the area of artificial intelligence (AI) has seen huge improvements over the last years. 

Nowadays, AI is capable of performing various visual tasks (Szeliski 2022, p. 237). This raises the question 

if testing of GUIs could benefit from the employment of artificial intelligence. 

1.1. Motivation 

Because of the shortfalls of manual testing, automated testing has the potential of decreasing the human 

effort and costs associated with testing (Nass et al. 2021) while increasing test coverage and reusability 

(Rafi et al. 2012). Some existing frameworks for automated testing of GUIs rely on random emulated ac-

tions, which is inefficient because many actions do not have any effect and because they are missing a 

structured approach at testing the application. Other frameworks use pattern recognition (Yeh et al. 2009) 

or access to the application’s source code to identify GUI elements. However, according to Coppola et al. 

(2016), both ways of testing GUI elements in mobile applications are fragile. Changes in the GUI or dif-

ferent devices require most automated tests to be revised defeating the purpose of automation. 

Recognition of GUIs independently of changes in the application could thus prove to be a crucial building 

block in achieving efficient automated testing. With the discovery of robust deep learning models for com-

puter vision (CV), it becomes possible to reliably detect GUIs of mobile applications based solely on what 

is displayed on the screen. This makes adaptation to changes easier. 

Previous work on this topic uses screenshots and mainly relies on object detection to achieve good accuracy 

when evaluated on its own dataset. Nonetheless, human error is introduced because of manual labeling of 
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datasets used for training. The fact that manual labeling is a time-consuming and repetitive task may am-

plify inaccuracies of bounding-boxes in the dataset. Since neural networks can only learn from information 

provided by the dataset, this inaccuracy is carried on to detection after training. As additional result, it is 

questionable in how far metrics derived from a manually labeled dataset are trustworthy for evaluation 

because data used for validation suffers from the same problem. Furthermore, object detection creates rec-

tangular bounding-boxes as output. It cannot accurately describe the shape of interactive elements that do 

not consist of a rectangle or are captured at an angle. 

When using screenshots for detection and emulated events for user actions, a part of the chain between 

human and mobile application is left out during testing. Everything happening between screen and human 

cannot be accurately reproduced. E.g., a human might be affected by Parkinson’s disease resulting in im-

precise actions or impaired vision causing difficulties in recognition of elements and texts below a certain 

size. Also, environmental conditions can impact usability (e.g., a wet screen). All of this could be included 

into testing by conducting tests end-to-end via a camera performing detection and a robot performing ac-

tions on a real device by using its touchscreen. To automate this, reinforcement learning could be used. 

This thesis investigates the task of detection. 

1.2. Objective 

The goal of this thesis is to determine whether a neural network (NN) trained on an automatically generated 

and labeled dataset offers advantages compared to previous approaches of detecting interactive elements in 

mobile applications. 

Discussed issues with accuracy are addressed by utilizing instance segmentation, which creates masks in-

stead of rectangular bounding-boxes. To obtain accurate labeling of data, information about position, size 

and type of interactive elements are taken directly from a mobile application. Since this information is 

usually not accessible in existing applications (source code is not available), a mobile application providing 

random GUIs with interactive elements and labeling data is programmed. This provides reliable labeling 

and fast generation of data once setup is finished. To include external influences, detection is performed on 

images captured by a camera and not on screenshots. 

Ideally, the network provides a confidence score for each interactive element and distinguishes between 

different interactive elements. The possible ways of interaction can then be deducted based on the element 

type. E.g., tipping or swiping. 

The neural network is mainly supposed to offer high accuracy while still preserving a sufficient speed for 

testing of mobile applications. 
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The neural network is evaluated on a part of the automatically generated and labeled dataset in addition to 

GUIs of real-world mobile applications. Its accuracy is compared to that of previous work with similar 

objectives. 

1.3. Structure 

So far, the topic of this thesis has been introduced and motivation and objective have been discussed in 

chapter 1. From here on, the thesis is structured as follows. Chapter 2 explains all theoretical concepts that 

are relevant to the work of this thesis. It includes mobile applications, Material Design, and software testing 

as well as computer vision, machine learning, deep learning and deep neural networks for object detection 

and instance segmentation. Chapter 3 covers previous work related to the objective of this thesis. Chapter 

4 outlines the theoretical approach behind the practical implementation. The implementation itself is pre-

sented in chapter 5. It includes the android application for randomized GUIs, scripts for dataset collection, 

Mask-RCNN as DNN for detection, workflow of dataset collection, and problems that arose during imple-

mentation.  Chapter 6 evaluates the results. Chapter 7 provides a summary of the entire thesis. Furthermore, 

it discusses limitations of the approach used, and gives suggestions and ideas for further research in the 

future. The structure is laid out graphically in Figure 1. 

Figure 1. Structure of thesis visualized as mind map. Starting in the upper left, chapters 

and sections are arranged clockwise. 
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2. Theoretical Foundations 

This chapter provides an overview over subjects relevant for a thorough understanding of this thesis. It 

covers the following subjects: Mobile applications, Material Design and software testing as well as com-

puter vision, machine learning and deep learning. 

2.1. Mobile Applications 

Applications are called mobile applications if they are developed specifically for mobile devices. Mobile 

devices themselves can be classified by their portability, their ability to access the internet via a wireless 

data connection, their local data storage and their power source that enables usage of the device without a 

power cable connected. Among others, smartphones and tablets are mobile devices. (Firtman 2010, p. 4; 

Myers et al. 2012, p. 214; Ross et al. 2020, p. 15) 

There are multiple operating systems/platforms for mobile devices. Nonetheless, Android and iOS are al-

most exclusively used with a respective market share of 70.98% and 28.41% (StatCounter Global Stats 

2022). 

Mobile applications can be divided into three categories: Native applications, mobile web applications and 

multi-platform applications. Each of which has its advantages and disadvantages. (Delia et al. 2015; Masi 

et al. 2013, p. 65) 

Native applications use the programming language and tools of a specific platform. This enables applica-

tions to use all features of a mobile device (E.g., camera, Global Positioning System (GPS), etc.). Addi-

tionally, this offers the best performance. However, support for multiple platforms can only be provided by 

developing independent applications for each platform. Therefore, the downside of this approach comes 

down to the programming effort required and costs occurring. (Delia et al. 2015; Masi et al. 2013, p. 65; 

Zohud and Zein 2021, p. 46) 

Mobile web applications run inside a web browser and are programmed using Hypertext Markup Language 

(HTML), Cascading Style Sheets (CSS) and JavaScript. On the one hand, this makes them highly platform 

independent. They can be used on all platforms without any platform specific programming overhead. On 

the other hand, this approach reduces performance. (Delia et al. 2015; Zohud and Zein 2021, p. 47) 

Multi-platform applications can be developed using different approaches. All of them have the following 

goal in common. Reducing or eliminating some of the downsides of mobile web applications and native 

applications at the same time. I.e., enable hardware access or increase performance in comparison to mobile 

web applications and still unify application development for all platforms, which is not the case for native 

applications. One such approach are hybrid applications, where a web application is wrapped in a platform 

native container. This can potentially give access to more device features than mobile web applications. 
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Yet, it still reduces performance. Another approach are cross-compiled applications. Here, applications are 

developed in one environment and compiled into native code for multiple platforms. Lately, the usage of 

multi-platform approaches in the industry is growing. (Zohud and Zein 2021, p. 47) 

2.2. Material Design 

Material Design is developed by Google and mainly used for mobile applications. It is a design system for 

GUIs “[…] inspired by the physical world and its textures […]” (Introduction - Material Design n.d.).  

Currently, Material Design is available for Android, Flutter, and web. It provides components (examples 

in Figure 2) and guidelines to build GUIs. GUIs are sometimes only referred to as user interfaces (UIs). 

The latest version released is Material Design 3. (Introduction - Material Design n.d.) 

Components provided with Material Design 3 are grouped into six categories: Action, communication, con-

tainment, navigation, selection, and text inputs. Action includes various button types with text and/or icons. 

A special button type are floating action buttons (FABs). There is only one visible at a time and it is typi-

cally responsible for the most important action that can be triggered. The category communication offers 

badges, progress indicators and snackbars to display useful information to the user. Containment provides 

wrappers for other components. These wrappers can be cards, bottom sheets, dialogs, dividers, or lists. 

Navigation lets the user navigate between different views. There are tabs, navigation bars/rails/drawers, 

and app bars. Selection gives the user the opportunity to choose between a predefined range of values using 

date pickers, menus, switches, sliders, radio buttons, time pickers, and chips. Text input lets users enter 

textual information. (Components – Material Design 3 n.d.) 

Figure 2. Examples for components provided by Material Design. From left to right, top to 

bottom: Top app bar, button, floating action button, text fields, bottom navigation, check-

boxes, switches, radio buttons and sliders. 

(Introduction n.d.) 
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2.3. Software Testing 

Software testing is utilized to validate the quality of software. It is the process of assessing whether the 

software can accomplish the tasks it was designed to do and does not produce unintended results along the 

way. Single assessments are named tests. If the assessment result is positive, the test is said to have passed. 

Otherwise, it is said to have failed. For this, software parts are usually executed systematically in a con-

trolled environment. It is a time-consuming task, that makes up a large part of the software development 

costs. Automated testing can reduce the share of costs, the resources consumed and at the same time further 

strengthen the reliability of software. (Jamil et al. 2016, p. 179; Luo 2001, p. 1; Myers et al. 2012, p. 2; 

Shao et al. 2007, p. 137) 

Black Box and White Box Testing 

Software testing types can be split into two complementary groups: White-box testing and black-box testing. 

White-box testing refers to structural testing techniques that are designed with knowledge of the source 

code in mind. They are generally used for verification and answer the following question: “[…] are we 

building the software right?” (Nidhra 2012, p. 29) In the context of GUI testing, white-box testing would 

use the source code to find an element and interact with it. Black-box testing spans functional testing tech-

niques. Their design is based solely on the specifications of the software and should not be influenced by 

the source code. They are generally used for validation and resolve the following question: “[…] are we 

building the right software?” (Nidhra 2012, p. 29) Here, GUI testing would detect elements based on what 

is shown on the screen and interact with them, or use random actions. (Liu and Kuan Tan 2009, p. 546; 

Nidhra 2012, p. 29; O'Regan 2019, pp. 120–127) 

Software Testing Types 

Unit Testing: The software testing type with the smallest scope is unit testing, which is performed in a 

white-box fashion. It is usually done by the developer and tests individual units of code. These can be single 

classes, methods, or functions. (Jorgensen 2018, pp. 229–329; Luo 2001, p. 2) 

Integration Testing: This is again a white-box testing technique employed by the developer. It verifies 

that multiple units work correct in conjunction. For this, it requires properly defined and implemented in-

terfaces. (Jorgensen 2018, pp. 229–329; Luo 2001, p. 2) 

System and Acceptance Testing: System testing and acceptance testing are black-box testing approaches. 

The former assures the quality of the entire system end-to-end and is usually done by independent testers. 

The latter assesses whether the user/customer is satisfied with the software. A testing framework for mobile 

applications using a camera for detection and a robot for interaction would fall into the category of system 

testing. (Jorgensen 2018, pp. 229–329; Luo 2001, p. 2) 
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An overview over testing types is given in Table 1. 

Table 1. Testing types and corresponding information about code opacity, person conducting the test, and 

scope of test. Based on Nidhra (2012, pp. 30–31). 

Testing type Opacity Who will do this testing? General scope 

Unit White-box testing Generally, programmers 

who write code they test 

For small units of code 

generally no larger than a 

class 

Integration White-box testing Generally, programmers 

who write code they test 

For multiple classes 

System Black-box testing Independent testers will 

test 

For entire product in rep-

resentative environment 

Acceptance Black-box testing Customer Side For entire product in cus-

tomer’s environment 

Code Coverage 

Since source code is known for white-box testing, one can determine the percentage of code that is covered 

by tests. More code covered makes errors less likely. The so-called code coverage can be measured in 

different ways. Statement coverage measures what percentage of all statements in the source code is exe-

cuted at least once. For decision coverage, which is also known as branch coverage, the number of executed 

decision outcomes is divided by the total number of decision outcomes to calculate the percentage. A deci-

sion outcome is one possible route taken by the program after the control flow is split up due to some 

decision that has to be made (i.e., if statements, while loops etc.). (IEEE/ISO/IEC International Standard - 

Software and systems engineering‐Software testing‐Part 4: Test techniques, pp. 30–34; O'Regan 2019, pp. 

125–126) 

Mobile Testing and GUI Testing 

Mobile applications are typically required to run on a multitude of devices and varying environmental con-

strains. Device screens have different resolutions, aspect ratios as well as physical sizes and can often be 

used in either landscape or portrait mode. There are different types of input (i.e., touch, stylus, mouse, 

buttons etc.) and the computing power is often inferior to non-mobile devices. Network connectivity can 

vary greatly or be totally absent. Because of this, extensive testing taking the given constraints into account 
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is crucial but often quite costly. Mobile testing can be performed on emulators but manual testing with a 

real device often still takes a necessary part in the process. (Myers et al. 2012, pp. 213–225) 

Since mobile applications rely heavily on interaction with the user via GUIs, testing of GUIs is an important 

part of the testing process. Especially because the complexity of GUIs opens room for errors. Albeit being 

very important, GUI testing is difficult for various reasons. GUIs often respond to events triggered by the 

user. Even a single event like a touch interaction is not easy to simulate. At the same time, there is a great 

number of possible events that can occur and must be tested. Additionally, testing criteria like code cover-

age are not conclusive for the quality of GUI tests. There are two widely used methods for GUI testing. The 

first one replays a previously captured user interaction. Because of this, the test can only be created once 

the GUI has been programmed and must be revised whenever changes in the GUI are made. The second 

method programmatically simulates interaction. This approach again has its drawbacks because identifying 

GUI elements and verifying the results is not trivial. (Ruiz and Price 2007, pp. 51–52) 

2.4. Computer Vision 

The following statements on computer vision are based on Szeliski (2022, pp. 3–9). 

For us human-beings, vision is an integral part for our perception of the environment because we can extract 

a lot of information from it. We are easily able to identify and classify objects, understand their shape, tell 

their distance from our eyes, and much more. Computer vision is the attempt to transfer this ability to 

computers. While great progress has been made, computer vision is still vastly inferior to human vision. 

This section covers topics of computer vision relevant for the understanding of following chapters in this 

thesis. 

2.4.1. Image Recognition 

This section is based on Szeliski (2022, pp. 344–396). 

Different types of recognition can be conducted on an image. This section will cover those relevant for this 

thesis. Further recognition tasks not discussed include face detection, pose estimation and panoptic seg-

mentation. Previously, classical algorithms that do not learn from data were used to tackle recognition tasks. 

Nowadays, deep learning is becoming more popular since it is well suited to solve such tasks.  

Large-scale datasets played an important role in this shift. They are helpful for both training and testing. 

The first large dataset driving advancements in the field was the PASCAL Visual Object Classes (VOC) 

challenge (Everingham et al. 2010). However, it provided only 20 labeled classes. This weakness was elim-

inated in the ImageNet dataset (Deng et al. 2009), which included 1000 classes and over a million images. 

This enabled end-to-end learning systems to succeed. The Microsoft Common Objects in Context (COCO) 
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dataset (Lin et al. 2014) allowed further improvements mainly in the area of accurate, per pixel detection 

of objects. 

Figure 24 applies each of the tasks discussed below to the same image to illustrate the difference. 

The most basic recognition task is classification. Here, a specific class is assigned to an entire image. 

Next, there is object detection. In addition to classification, it localizes objects. The result consists of bound-

ing-boxes, each of which is a rectangular cut-out of the image containing only one object, and the corre-

sponding class. An example would be the detection of faces or pedestrians. Since objects are not necessarily 

rectangular, the bounding-box usually covers additional pixels that do not belong to the detected object. 

Furthermore, there are tasks resulting in pixel-wise, binary masks for the image. This group of tasks is 

called segmentation: 

Figure 3. Different computer vision tasks applied to an image: Classification assigns a 

class to the entire image (upper left). Object detection outputs bounding-boxes for every 

object in the image as well as a corresponding class (lower left). Semantic segmentation 

assigns every pixel belonging to a certain class to a mask for that class (upper right. In-

stance segmentation outputs a binary mask and class for every object found in the image 

(lower right). 

(Abdulla 2018) 
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Semantic segmentation produces a common mask for all instances of a class contained in the image. Thus, 

all pixels of all objects belonging to an individual class are assigned to one mask for that class. 

Instance segmentation takes this one step further and produces a mask for each individual object. Hence, if 

there are multiple objects belonging to the same class, each of them is assigned to the same class but is 

associated with its own mask covering all pixels of that particular object only. 

2.4.2. Selective Search 

Selective search is an algorithm in the domain of computer vision designed to propose regions in an image, 

that are likely to contain an object. It utilizes segmentation to do so. This algorithm is relevant for later 

parts of this thesis. This section on selective search is based on Uijlings et al. (2013). 

At first, selective search divides the image into an initial set of small segmentation regions. Each of the 

regions should cover at most one actual object in the image. For this, selective search uses a fast version of 

the algorithm proposed by Felzenszwalb and Huttenlocher (2004). 

From this initial set, selective search takes the two most similar regions and merges them. This is repeated 

until there is a single region left spanning the entire image. Similarity is evaluated by a composition of 

different criteria: Color, Textures, Size (preferring smaller regions), and Position (preferring regions having 

a large common border or regions, where one encloses the other). This results in a hierarchical bottom-up 

grouping process as can be seen in Figure 4. All the regions produced during this process are regarded as 

proposals for possible objects in the image. 

2.5. Machine Learning 

The following statements on machine learning (ML) are mostly based  on Zhang et al. (pp. 15–32). 

Figure 4. Segmentation masks at various stages in the hierarchical grouping process start-

ing with many small regions and ending in few big regions. Underneath, the corresponding 

images with bounding-box proposals at each stage. Bounding-boxes of actual objects are 

highlighted. (Uijlings et al. 2013) 
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Usually, algorithms solving specific problems are explicitly programmed by human beings. For this, hu-

mans require an understanding of the connection between a given information (input) and the desired an-

swer (output). Only then can they convert this knowledge into a computer program. While this approach 

yields satisfying performance for many tasks, other tasks are hard to solve or cannot be solved at all using 

this approach. This is because human-beings are not always able to formulate a well-suited algorithm for 

various reasons. 

Some of these tasks like object detection, humans can perform subconsciously with ease. However, at the 

same time they are not able to consciously understand the connection and formulate a well-working algo-

rithm to solve this task. At other tasks, machine learning approaches exceed the performance of most hu-

man-beings. One example is the improved detection of skin cancer based on images (Haenssle et al. 2018). 

Another example is the more reliable discovery of possibly dangerous polyps, which can develop into can-

cer, during colonoscopy (Alessandro Repici et al. 2020). In addition, some problems do not have a static 

answer. The answer can change over time. This requires an algorithm to adapt during execution. (Zhang et 

al., pp. 15–16) 

Machine learning offers an alternative approach to manually programmed algorithms by learning from ex-

perience as stated in the definition given in the following well-known quote: 

“A computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P, if its performance at tasks in T, as measured by 

P, improves with experience E.” (Mitchell 1997) 

In machine learning, a model digests input and transforms it in some way to generate output. The transfor-

mations applied depend on parameters, which are tweaked by a learning algorithm. Based on experience, 

the learning algorithm uses an objective function to adjust these parameters in a meaningful way that im-

proves the performance of the model at the given task. 

This experience is provided by sample data. A collection of data is called dataset. Individual entries are 

named data points. A data point always consists of features, which are inputs for the task/problem to be 

solved. Depending on the type of learning, a data point can also include the corresponding desired output, 

a so-called label. E.g., a data point could be an image where the individual pixel values are input features 

and a classification like “Cat” or “Dog” is the output label. 

Usually, there are two distinct datasets, a training dataset, and a test dataset. The former is used during 

learning while the latter is used to judge the performance afterwards. This is needed because good perfor-

mance on the training dataset does not necessarily translate to good performance on unseen data.  
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Connected to this is the concept of generalization. If the model performs well on the training dataset but 

not on the test dataset, the model does not generalize well. This is also called overfitting. Here, the model 

found a connecting pattern between features and labels, which is exclusively found in the training dataset 

and not shared with the data of the test dataset. If the model performs well on both training and test dataset, 

it generalizes well. However, the model can also happen to perform bad on both datasets, which is then 

called underfitting. When the model is underfitting, this often means that the patterns underlying the data 

relevant to the task are too complex to be described by the model (E.g., a linear model used to fit a quadratic 

function.). It is also possible the model does not yet have enough experience to uncover this pattern. All 

three possible results are illustrated in Figure 5. (Goodfellow et al. 2016, pp. 109–110) 

  

Figure 5. Three graphs with a line fitted to training data. Green points are part of the 

training dataset and blue points part of the test dataset. In the left graph, the line is over-

fitting. It describes the green points very well but not the blue ones. In the graph in the 

middle, the line is overfitting. It describes neither green nor blue points appropriately. In 

the right graph, the line describes both green and blue points decently indicating good 

generalization. 

Based on Nguyen and Zeigermann (2021, pp. 92–95). 
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There are broadly three types of machine learning: Supervised learning, unsupervised learning, and rein-

forcement learning.  

Supervised learning takes a training dataset for learning, in which features and labels (inputs and outputs) 

are present. The learning algorithm then produces a model with fitted parameters, which we can use to 

acquire a prediction of the labels of new, to the model unknown input features as seen in Figure 6. (Szeliski 

2022, p. 239) 

Executing the model with previously unseen data as input to predict unknown labels is sometimes referred 

to with the term inference, even though this term is ambiguous and can thus create confusion (Zhang et al., 

p. 92). 

Common tasks solvable by supervised learning include regression and classification. For regression, the 

output/label is a numerical value, and for classification, the output is one of multiple categories (classes). 

An example of both tasks is displayed in Figure 7. (Szeliski 2022, p. 239) 

Figure 6. Supervised learning takes training inputs and training labels as input. It outputs 

a mode with learned parameters, that can be used to predict outputs for new, to the model 

unknown inputs. 

Based on Zhang et al. (2021). 

Figure 7. Example of regression: Fitting line to dataset (left), and example of classifica-

tion: Line dividing dataset into two distinct classes (right). 

Based on Soni (2018). 
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Unsupervised learning takes a training dataset similar to supervised learning. However, the dataset consists 

only of features, and does not have corresponding labels. Thus, the learning algorithm is supposed to find 

patterns inside the dataset on its own. (Szeliski 2022, p. 257) 

Both supervised and unsupervised learning can be summarized under the term offline learning because 

training takes place before and independently of the environment in which the model is later used. This is 

problematic if the environment changes, either independently or in response to results of the machine learn-

ing model. E.g., a model might initially be able to filter out all spam emails received but the attacker could 

alter their writing style in an attempt to evade the detection. 

Reinforcement learning differs from the previous approaches. Here, a so-called agent learns a policy during 

exposure to the environment. I.e., the agent perceives the evolving environment and takes this into account 

for future actions. For this, the agent can observe the environment and take actions influencing the envi-

ronment. Furthermore, the agent receives a reward for every action taken. This reward is determined by an 

objective function judging how successful the action of the agent was for achieving the task. Based on the 

reward, the learning algorithm aims to improve the policy to receive a reward as high as possible. The 

interaction of the various parts can be seen in Figure 8. (Zhang et al., p. 31) 

2.5.1. Support Vector Machine 

One algorithm in the domain of supervised machine learning is support vector machines (SVMs). The fol-

lowing statements on SVMs are based on Bishop (2006, pp. 325–339). 

Essentially, an SVM divides features of a dataset into two classes. It does this by learning a linear function, 

which splits the dataset in two. All data points lying on one side of the function are categorized as one class 

while all data points on the other side are categorized to the other class. The distance between the function 

and the nearest data point of a class is called margin. To find an appropriate linear function dividing the 

data, this margin is maximized. 

Figure 8. Interaction of agent and environment through observation, action, and reward. 

Based on Zhang et al. (2021, p. 31). 
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However, this approach only works for a dataset containing two classes for which the data points are line-

arly separable. If they are not linearly separable, a so-called soft-margin is introduced meaning the margin 

is allowed to take on negative values for data points that prevent linear separation otherwise. Both variants 

are shown in Figure 9. 

For datasets consisting of multiple classes (i.e., more than two classes), there exist two approaches summa-

rized under the term multiclass SVMs. 

The first approach trains as many SVMs as there are classes. Each SVM is responsible for one class and 

trained by treating this exact class as one class while grouping all other classes to a second class. Because 

of this, it is also named one-versus-the-rest approach. It can be seen in Figure 10 (left). 

The second approach goes through all possible pairings of two classes from the entirety of classes. It trains 

an SVM on each of them. When given a data point, each SVM votes to which of its classes the data point 

belongs. The class receiving most votes is then chosen as predicted label. This approach is sometimes re-

ferred to as one-versus-one and visualized in Figure 10 (right). 

Figure 9. SVG with hard margin separating linearly separable data into two distinct clas-

ses (left) and SVM with soft margin for data that is not linearly separable (right). 

Based on Nguyen and Zeigermann (2021). 

Figure 10. Multiclass SVM approaches: One-versus-all separating each one class from all 

other classes (left) and one-versus-one separating pairs of classes one by one (right). 

Based on baeldung (2020). 
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2.6. Deep Learning 

It is different to other machine learning approaches insofar that input values are transformed into output 

values by performing multiple operations on it one after another (Zhang et al., p. 19). 

This chapter starts with an explanation of the most basic model family for deep learning. After this, it shows 

how learning works in the context of this model family. Finally, it gives an explanation on a different model 

family especially used for image recognition as well as metrics used in the domain of deep learning. 

2.6.1. Multilayer Perceptrons 

There are different terminologies used for the most basic type of deep neural networks (DNNs): Deep feed-

forward network, feedforward neural networks or multilayer perceptron (MLP) (Goodfellow et al. 2016, p. 

164; Zhang et al., p. 167). This type was initially derived from what was understood of the human brain 

and its nervous system at the time of its invention (Da Silva et al. 2016, p. 11). As the different names 

already imply, this type of DNNs consists of many neurons that are interconnected through a network. More 

specifically, a network is a structure of multiple layers chained together where each layer in turn is com-

posed of multiple neurons (Zhang et al., p. 167). 

A single neuron is typically comprised of the following components: It has a vector of input values x and 

an output value y. Additionally, it has multiple parameters and an activation function, which can be seen as 

properties of the neuron. The parameters are a vector of weights w and bias b. (Da Silva et al. 2016, p. 12; 

Szeliski 2022, p. 270)  
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The neuron computes its output value y from its input vector x in the following manner: At first, it weights 

each input value xi, i.e., each input xi is multiplied with its corresponding weight wi. Then, all weighted 

inputs are summed up. This is equivalent to the dot product of vector x and w. After this, the neuron adds 

bias b to the sum. At last, an activation function is applied to the result yielding the final output y of the 

neuron. The process as a whole is visualized in Figure 11. (Da Silva et al. 2016, pp. 12–13; Szeliski 2022, 

p. 270) 

There exist various activation functions as seen in Figure 12, the most popular including rectified linear 

unit (ReLU) and sigmoid. The ReLU function outputs the maximum of the input and zero bounding the 

output to values equal to or greater than zero. The sigmoid function maps the input to the range of zero to 

one. Another important activation function is the softmax function. It is similar to the sigmoid function 

(Mercioni and Holban 2020, p. 144). However, it takes not one value but a vector as input. It is thus applied 

to a layer of neurons and not on a neuron individually. It maps each value of the vector to a number between 

zero and one. The results are then normalized producing a probability distribution. All values of the output 

vector add up to one (Banerjee et al. 2020, p. 2; Szeliski 2022, p. 274). This probability distribution is often 

useful in the context of multiclass tasks. Activation functions are needed to give DNNs capabilities beyond 

linear machine learning models. (Ansari 2020, pp. 146–151; Zhang et al., pp. 169–173) 

Figure 11. Internals of an artificial neuron: Input is weighted and summed up with a bias. 

After applying an activation function, the output is obtained. 

Based on Da Silva et al. (2016, p. 12). 
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In this type of DNN, a neuron in one layer is connected to each neuron of the successive layer. Meaning 

the output value of this neuron is also an input value for each neuron in the following layer. Because of this, 

the size of the input vector of these neurons is equal to the number of neurons in the previous layer. This 

way of connecting the neurons gives this type of layer its name: Fully connected layer (fcl). There are other 

types of layers. Some of which, namely convolutional layers and pooling layers, will be explained in section 

2.6.3 because they are relevant for computer vision tasks. (Szeliski 2022, pp. 271–272; Zhang et al., p. 169) 

An MLP consists of one input layer, a varying number of intermediate so-called hidden layers and one 

output layer. Hidden layers and output layer are all fully connected layers. However, the input layer is 

different to all other layers. It simply represents the input feature vector and does not include any neurons 

or other computations whatsoever. The name of the hidden layers stems from the fact that no desired outputs 

are known for these layers. It must thus be derived during learning, which will be covered in the next section. 

The output layer provides the final result of the MLP. Since training is supervised, the desired results of 

Figure 12. Widely used activation functions: Rectified linear unit (ReLU) is a linear func-

tion for positive values and equal to zero for negative values. Leaky rectified linear unit 

(Leaky ReLU) is the same for positive values but uses a fraction of the value for negative 

values. Hyperbolic tangent (tanh) maps values to a range of negative and positive one. The 

sigmoid function is similar but maps to values between zero and one. 

Based on Szeliski (2022, p. 273). 

ReLU Leaky ReLU 

tanh sigmoid 
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this layer are known when training the MLP because ultimately the output is supposed to predict the label 

belonging to the input feature vector. Usually, the output layer uses the softmax activation function to ac-

quire a probability distribution over all classes (Szeliski 2022, p. 274). A graphical example of an MLP, 

where the network is visualized as a graph with neuron as vertices/nodes and connections between neurons 

as edges, can be seen in Figure 13. (Goodfellow et al. 2016, p. 165; Zhang et al., p. 169)  

2.6.2. Optimization 

MLPs have different types of properties that can be tweaked. On the one hand, they have so-called hyperpa-

rameters like the number of layers and the number of neurons in each layer. These are up for a human-

being to decide. On the other hand, neurons have internal parameters themselves. Each neuron has a weight 

and a bias, which can be adjusted. Because of the way neurons are interconnected, the number of parameters 

is much higher for MLPs than for other machine learning algorithms. One could assign each parameter a 

random value, provide an input feature vector, and perform all the calculations discussed in the previous 

Figure 13. Basic example of an MLP with two hidden layers as graph with neurons as 

vertices/nodes and connections as edges. Every input in the input layer is connected to 

every neuron of the first hidden layer, each of which is in turn connected to every neuron 

of the second hidden layer. All those neurons are interconnected with each neuron of the 

output layer resulting in the final output of the MLP. 

Based on Da Silva et al. (2016, p. 23). 
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section above to retrieve a result. Performing these calculations is also named forward propagation or for-

ward pass because it starts with the input layer and end with the output layer. However, the likelihood that 

this forward propagation will yield an in any way meaningful result is vanishingly small. Therefore, a 

learning algorithm must tweak the parameters for good results. (Zhang et al., p. 180) 

There are different ways to look at and explain the working principles of the learning algorithm. Put simply, 

the learning algorithm uses supervised learning in the following manner. At first, it performs forward prop-

agation with the input vector of a datapoint in the training dataset. Then, it compares the outputs of the 

MLP with the desired outputs provided by the training sample and slightly adjusts the parameters in a way 

that moves the actual outputs a little bit closer to what is desired. This process as shown in Figure 14 is 

repeated many times until the difference between actual and desired outputs does not decrease anymore. 

However, this is a very simplified view at what is happening during learning. (Moore et al. 2021) 

Loss function 

More specifically, this difference between actual output produced by forward propagation and desired out-

put as given by the label is quantified using a loss function. There exist various loss functions. E.g., a very 

popular loss function for multiple classes is categorical cross-entropy. A high output of the loss function 

means prediction is way off, an output near zero means good prediction accuracy. Since this loss function 

measures a difference, it cannot be negative. (Szeliski 2022, p. 280) 

Figure 14. An example of an MLP trained on images of digits. First, forward propagation 

is performed. Then, actual outputs are compared with desired outputs and parameters 

(weights) are adjusted to get closer to the desired result. 

(Moore et al. 2021) 
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Backpropagation 

To calculate predictions for different inputs, all internal parameters of the MLP are regarded as fixed and 

inputs are seen as variable. For learning, this is reversed. The input is fixed but the internal parameters of 

the MLP can be adjusted. As a result, the loss function is a multivariate function, which has as many vari-

ables as there are internal parameters to the MLP. 

Now, to improve the accuracy of the MLP, the loss function must be minimized. In other words, the goal 

is to find the global minimum of the loss function by adjusting the internal parameters. This is an optimi-

zation problem that can be solved using derivatives. The chain rule is used to calculate the gradient of the 

loss function, which contains information about how a small change in each of the parameters changes the 

final output of the function. I.e., does a slightly higher value for a parameter increase or decrease the output 

value and how strongly does the output react to that change. 

Because the chain rule requires calculations for the gradient to be performed by starting at the last layer and 

working backwards until the first layer, this process is named backpropagation as opposed to forward prop-

agation. Backpropagation is performed computationally. It requires the computer to keep track of depend-

encies of individual parts of the MLP in a graph structure. These computations are referred to as automatic 

differentiation or autograd in short (Zhang et al., p. 68). (Goodfellow et al. 2016, pp. 204–207; Zhang et al., 

pp. 181–182) 

Learning Algorithms 

The gradient resulting from backpropagation is multiplied with a hyperparameter named learning rate and 

subtracted from the current parameters to receive updated parameters that are used for all future calculations. 

When performing forward propagation with these updated parameters on the same datapoint used for back-

propagation, the output of the loss function should now be lower indicating improved prediction of the 

MLP for that particular datapoint after one step. If the dataset consisted of one datapoint in total, all that is 

left to do is to repeat this step until improvements stall. This is called gradient descent. However, an MLP 

trained on one training sample would not be able to learn any general patterns. It would overfit to that one 

datapoint and not be of any use. 

Thus, a larger dataset is needed, and backpropagation and updating of parameters must be repeated for 

many datapoints in the dataset. Running calculations for all datapoints once is referred to as one epoch of 

training. Since the optimal configuration of parameters differs for every datapoint, the gradients would vary 

greatly and output of the loss function over time would be very noisy. This way of learning explained so 

far, where parameters are updated after calculation of one datapoint, is named stochastic gradient descent 

(SGD). (Goodfellow et al. 2016, pp. 290–292; Szeliski 2022, pp. 287–288) 
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Apart from SGD, there is also minibatch stochastic gradient descent and gradient descent using whole 

batches. For minibatches, not one but multiple datapoints are used and backpropagation is performed for 

all of them before updating the parameters with the summed up gradients of these datapoints. For whole 

batches, this goes even further and the entire dataset is used to calculate updated parameters afterwards. All 

these approaches have pros and cons. E.g., optimization using batches has problems with local minima, 

which are not the best solution to the optimization problem. Additionally, it requires the most memory of 

all approaches and can be very inefficient as explained in Figure 15. Sometimes, this can be overcome by 

adjusting the learning rate. (Goodfellow et al. 2016, pp. 290–292; Szeliski 2022, pp. 287–288) 

However, there exist more sophisticated algorithms like ADAM (Kingma and Ba 2014), which make use 

of additional information to be more efficient. ADAM specifically uses momentum calculated using previ-

ous gradients. This is comparable to a marble rolling down a hill. Even if the direction of steepest descent 

differs from which way the marble is currently rolling, it does not directly move in this direction but slowly 

turns because of the momentum carried on from before. This would work well to counter the effect dis-

cussed in Figure 15. (Goodfellow et al. 2016, pp. 292–293; Szeliski 2022, pp. 289–290) 

Hardware 

Because of high parameter count and large datasets, the learning process requires quite a lot of computing 

power and memory especially for deep learning. Since most of the computations are matrix multiplications 

and graphic processing units (GPUs) happen to be specialized to perform those quickly and in parallel, 

GPUs are well suited as hardware for training. Apart from GPUs, there exist some hardware architectures 

Figure 15. Graph showing gradient descent (red line) for a function with two inputs using 

an entire batch. Black lines indicate points where output level of the function is the same. 

Therefore, the shown example ca be thought of like an elongated valley. Because of this, 

gradients (black arrows) do not point to the center of the valley. This results in alternating 

gradients after every step of gradient descent making optimization take much longer com-

pared to the shortest path downhill. 

(Goodfellow et al. 2016, p. 293) 
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like tensor processing units especially optimized for this task. Eventually, quantum computers could also 

become useful for this (Biamonte et al. 2017). (Zhang et al., pp. 34–36; Szeliski 2022, p. 964) 

Methods for Faster/Better Results 

There are some additional measures apart from improved learning algorithms that can be taken to further 

improve the results. 

To reduce training times in practice, transfer learning is a widely adopted method. When using a neural 

network that someone else already trained on some dataset, one can reuse the resulting parameters and 

continue training on a different dataset. Because part of what the neural network already learned can often 

be useful beyond its initial dataset (E.g., for images the first layers often learn more generalized patters like 

edges, textures and shapes, that are present in other data as well), less training is needed to achieve similar 

results compared to training of a neural network with randomly initialized parameters. (Zhang et al., p. 606) 

When such a pretrained neural network is used as part of a larger network, the rest of the neural network 

must be trained from scratch. However, the pretrained part is likely to already be somewhat optimized. 

Thus, its parameters will not change as much as the rest. This case is referred to as fine-tuning. (Zhang et 

al., p. 606) 

Sometimes, it is desired to train parts of a neural network in isolation. For this, all parameters not belonging 

to that part are frozen meaning they are used for forward propagation, but parameters are not updated and 

kept fixed during learning. 

In general, neural networks have many more parameters than other machine learning algorithms. This 

makes them more likely to overfit. This means decreased performance for new data. Two ways to counter 

this are data augmentation and dropout. 

Overfitting can be prevented by using larger datasets. However, if the is no more data that can be collected, 

a workaround is needed. Data augmentation is the process of changing the appearance of already existing 

datapoints and using this as additional datapoints for training (E.g., rotating, scaling or otherwise altering 

an input image.). (Zhang et al., pp. 597–602) 

Dropout is the process of randomly disabling a part of the connections between neurons. I.e., these connec-

tions are not used during calculations at all (neither forward propagation nor backpropagation). Therefore, 

a neural network cannot rely on a single connection to detect a certain feature and must find other ways to 

detect it resulting in better generalization. (Zhang et al., pp. 193–194) 
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Example in Two Dimensions 

For the case of binary classification of points in a two-dimensional plane, there is a very neat way to visu-

alize the learning process in a different way by computing the output of the MLP for the entirety of the 

plane and assigning colors to the classes to get a sense of how learning solves the task. Essentially, the 

parameters are tweaked in such a way that the entirety of neurons represent a nonlinear boundary separating 

the classes. An example is given in Figure 16. 

The left plot shows the output of an MLP where parameters are initialized at random, and no training took 

place. The colors of the background do not correspond with the color of the datapoints and are in general 

very neutral. Thus, correct classifications are low, and uncertainty is high. 

The plots in the middle and on the right show the output of MLPs after training. In both plots, there is a 

very clear blue center containing all blue datapoints while the surrounding area is clearly yellow containing 

all yellow datapoints. This implies that training managed to adjust the parameters very well to solve the 

given task. In the middle, the boundary between yellow and blue forms a polygon while the boundary on 

the right forms an oval. This is due to different activation functions utilized in the MLPs. For the results in 

the middle, ReLU was used as activation function. For the right, sigmoid was used as activation function. 

This shows how different activation functions can influence the behavior of a MLP for learning. 

In a way, the plots are comparable to those obtained by SVMs except there are two differences. Classifica-

tion is not linear because of activation functions and there is no clear binary border but some degree of 

uncertainty near the border. In general, MLPs with higher parameter count can solve more complex prob-

lems than given in the example shown in Figure 16. 

Figure 16. Three two dimensional plots with datapoints of two classes (marked in yellow 

and blue), where blue points are in the center and encircled by a ring of yellow points. The 

background is colored according to what class a created MLP would assign to a point at 

that position. Shades in between yellow and blue indicate uncertainty. In the left plot, back-

ground has no clear colors. In the middle, a blue polygon is surrounded by yellow back-

ground. In the right plot, a blue oval is encircled by yellow background. 

Based on Carter, Daniel Smilkov and Shan (2017). 
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The source for the plots is an interactive website and it is encouraged to visit the source as it provides a 

very intuitive way of understanding MLPs. 

2.6.3. Convolutional Neural Networks 

The previous sections discussed the basics of deep learning including the model architecture and learning 

process of MLPs. While MLPs can be used for computer vision tasks, they are invariant to the structure of 

their inputs. Changes in the order of the input vector prior to learning do not influence the potential capa-

bilities of the MLP after learning. However, this means that the MLP does not make use of the order even 

when knowledge of the structure can be advantageous. In images for example, pixels nearby are more likely 

to contain information that is related to each other. MLPs can gather information about the structure during 

learning but it would be desirable to retain and utilize this information from the beginning on because it 

reduces parameter count and thus time needed for computations. A network type doing exactly this are 

convolutional neural networks (CNNs). They can be beneficial for tasks where inputs have a known  matrix-

like structure as images, time-series and audio-sequences do (Goodfellow et al. 2016, p. 326; Zhang et al., 

p. 233). 

To take advantage of the input’s structure, convolutional neural networks utilize new layer types named 

convolutional layer and pooling layer which will be explained in the following paragraphs. (O'Shea and 

Nash 2015, p. 4) 

The explanation for convolutional layers uses inputs with two dimensions. An example for such an input 

would be a greyscale image. Nonetheless, this concept can be applied to inputs of arbitrary numbers of 

dimensions (including one dimension). Convolutional layers have a matrix of weights called kernel. This 

kernel is typically much smaller than the entire input matrix. Convolutional layers start with a rectangular 

cutout the same size as the kernel in one corner of the input matrix. Each input value of the cutout is mul-

tiplied by the corresponding weight of the kernel. Afterwards, all results are summed up and an activation 

function is applied resulting in one output value. As next step, this same cutout is shifted over the input 

matrix so that it now contains different input values. Again, multiplication, summation and activation are 

performed on the input values. The same weights and the activation function from the previous cutout are 

used again. This shifting is repeated for every cutout in the input matrix resulting in a matrix of outputs. 

Because of this shifting, the cutout is usually referred to as sliding window. The steps happening before the 
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activation function are illustrated in Figure 17 for two positions of the sliding window.  Each convolutional 

layer has an arbitrary number of kernels. (O'Shea and Nash 2015, pp. 5–6; Zhang et al., pp. 240–242) 

The resulting output matrix is sometimes referred to as feature map. The reason for this can be deducted 

from Figure 18. Because the weights of a kernel are fixed for the entirety of the input, each kernel is re-

sponsible for one specific feature in the input image. Whenever a feature is present in the input image, the 

output value of the kernel responsible for the feature spikes at the position of the feature. Therefore, the 

output matrix maps features to locations in the input image. (Zhang et al., pp. 244–245) 

The sliding window of the kernel can be shifted by one or more entries in the input matrix. The amount of 

shifting applied each time is a hyperparameter named stride. Another new hyperparameter is padding. Pad-

ding indicates if and how the original input matrix is surrounded with artificially added inputs (possible 

values for these added inputs are same as real input next to it and all equal to zero). This is done, because 

Figure 17. Shown above is an example of two positions of the sliding window multiplied 

with the kernel resulting in a single output value per position. 

Figure 18. Each cell represents the learned weights of a kernel for an image with three 

color channels. The various kernels picked up specific features of the input like edges, tex-

tures, or color combinations. 

(Krizhevsky et al. 2012, p. 6) 
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whenever the sliding window is greater than one, the output matrix is smaller than the input matrix, which 

is not always a desired result. E.g., with a sliding window of 3 × 3 and a stride of 1, an n × n input matrix 

leads to an n-1 × n-1 output matrix. (O'Shea and Nash 2015, pp. 5–6; Szeliski 2022, p. 294) 

In a way, the approach used in a convolutional layer is comparable to a neuron of a fully connected layer. 

The input is weighted and summed up. Then, an activation function is applied. But instead of connecting 

the neuron to every input at the same time, the calculations are performed for one cutout at a time while 

reusing the same neuron with the same weights for all of the cutouts. This greatly reduces parameter count 

(Lecun et al. 1989, p. 544). 

Pooling layer yet again use a sliding window of fixed size. However, they do not perform the same calcu-

lations on this window as convolutional layers do. When using average pooling, all inputs values inside the 

window are averaged resulting in a single output. For max-pooling, only the highest input value is return 

as output value. An example for the process of max pooling is provided in Figure 19. (Ansari 2020, p. 200; 

Goodfellow et al. 2016, p. 335) 

Usually, CNNs use convolutional layers and pooling layers in the beginning followed by one or more fully 

connected layers as shown in Figure 20. Since the output of those layers is multidimensional, it must be 

flattened to one dimension to be fed into fully connected layers. Some network architectures only use con-

volutional layers and pooling layers. These are typically named fully convolutional networks (Szeliski 2022, 

p. 272). (Ansari 2020, p. 201) 

Figure 19. Max pooling with a window size of 2 x 2 applied to a sample input. The maximum of 

all values in the window is computed. Then, the sliding window is moved to the next position and 

the process is repeated. 



THEORETICAL FOUNDATIONS   28 

 

More complex model architectures of DNNs often rely on pretrained common CNNs as base network. 

These base networks are sometimes referred to as backbones. Some of those are presented in Table 2. 

Table 2. Common Convolutional Neural Network Architectures. Based on (Bharati and Pramanik 2020, 

pp. 659–660). 

LeNet (Lecun et al. 1998) 

AlexNet (Krizhevsky et al. 2012) 

ZF Net (Zeiler and Fergus 2014) 

GoogLeNet (Szegedy et al. 2015) 

VGGNet (Simonyan and Zisserman 2014) 

ResNet (He et al. 2016) 

 

  

Figure 20. Example of simple CNN architecture with one convolutional layer, one pool-

ing layer and two fully connected layers. 

 (O'Shea and Nash 2015, p. 4) 
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2.6.4. Metrics 

There exist various metrics to measure performance of DNNs. Some of those are relevant for the under-

standing of related work and judgement of the performance of their results as well as those of this thesis. 

Therefore, this section gives a brief explanation for each of them. 

An understanding of the possible outcomes of a prediction and their relationship is useful for the explana-

tion of the first two metrics: Precision and recall. Two distinctions can be made resulting in 4 possible 

combinations when detecting a class. First, there is prediction of the DNN on the one hand and the true 

reality on the other hand. Second, for a certain class, both can have the value of match and non-match. I.e., 

a match or a non-match can be predicted and at the same time a match or a non-match can be true. A 

predicted match that is also a true match is named true positive (TP), a predicted match that is a true non-

match is a false positive (FP), a predicted non-match that is a true non-match is a true negative (TN), and a 

predicted non-match that is a true match is a false negative (FN). This can be displayed as a matrix. An 

example is given in Figure 21. (Szeliski 2022, p. 442) 

Precision 

In terms of the previously introduced matrix, precision is calculated using this formular: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∶=  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

𝑃′
 

This means that precision is the ratio of true matches that are predicted as being matches to predicted 

matches. It leaves out predicted matches that are true non-matches. (Szeliski 2022, p. 443) 

Recall 

In contrast to precision, recall is the ratio of true matches that are predicted as being true out to true matches. 

This leaves out true matches that are predicted non-matches. (Szeliski 2022, p. 443) 

Recall is calculated as follows (Szeliski 2022, p. 443): 

𝑅𝑒𝑐𝑎𝑙𝑙 ∶=  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑃
 

Figure 21. Example of matrix of possible combinations with TP, FP, TN and FN. 

 (Szeliski 2022, p. 442) 
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Accuracy 

Accuracy is the ratio of true and predicted matches, and true and predicted non-matches to all matches and 

non-matches (Szeliski 2022, p. 443): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∶=
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
 

Intersect over Union (IoU) 

IoU is a common metric used to evaluate the accuracy of bounding-boxes. There is always a ground-truth 

bounding-box as provided by the dataset and a bounding-box predicted by a DNN. As the name implies, 

IoU is the ratio of the intersect of both bounding-boxes to the union of both bounding-boxes as visualized 

in Figure 22. (Szeliski 2022, p. 380) 

This is the mathematical formular for calculation (Szeliski 2022, p. 380): 

𝐼𝑜𝑈 ∶=
𝐵𝑝𝑟 ∩ 𝐵𝑔𝑡

𝐵𝑝𝑟 ∪ 𝐵𝑔𝑡
 

Figure 22. Schematic example of IoU (a) and example using a real image (b). (Szeliski 

2022, p. 380) 
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Precision-Recall-Curve 

The precision-recall-curve is always calculated for a single class. It is calculated in the following way: First, 

a IoU value is chosen as threshold to decide if a bounding-box was properly detected. I.e., if the IoU of 

ground-truth and prediction is greater than the threshold, it is a true positive. Then, precision and recall are 

sampled for different confidence score of the predictions of the DNN. These are plotted as points and con-

nected by a line as shown in Figure 23. (Szeliski 2022, p. 381) 

Average Precision (AP) and Mean Average Precision (mAP) 

The average precision is calculated by computing the area under the precision-recall-curve and mAP is 

simply AP averaged over all classes. Because a IoU threshold must be chosen for the precision-recall-curve, 

AP and mAP also depend on this IoU threshold. Therefore, they are often provided with the IoU threshold 

used. E.g., mAP with an IoU threshold of 0.5 is often written as mAP@IoU=0.5. (Szeliski 2022, p. 381) 

 

2.7. Deep Neural Networks for Object Detection and Instance Seg-

mentation 

This section covers ideas and versions of R-CNN and YOLO, both of which are popular model architectures 

for object detection using CNNs as base networks. It has a separate section for Mask R-CNN, which is a 

version of R-CNN that enables instance segmentation in addition to object detection in contrast to other 

versions. 

Figure 23. Precision-recall-curve for a single class and IoU threshold. For different con-

fidence scores, precision and recall are calculated and points are plotted and connected. 

(Szeliski 2022, p. 381) 
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2.7.1. R-CNN Family 

The following approach at object detection is based on region proposals and convolutional neural networks. 

Thus, it is given the name R-CNN, which stands for Regions with CNN features (Girshick et al. 2014a). 

Fast-RCNN and Faster-RCNN are successors building on this method to improve speed of inference and 

training time (Bharati and Pramanik 2020, pp. 660–662). 

R-CNN 

The following statements on R-CNN are mainly based on Girshick et al. (2014a). 

The architecture of R-CNN consists of three stages, which are displayed in Figure 24 (left): Region pro-

posals, feature extraction and object category classifiers. After analysis revealed inaccurate bounding-boxes, 

the authors of the paper added bounding-box regression to the third stage of the architecture to increase 

accuracy. 

First Stage: R-CNN starts with many probable candidates for objects and reduces the number later. To 

extract around 2000 of these candidates, so-called region proposals, from the input image, R-CNN utilizes 

Selective Search as discussed in section 2.4.2. 

Second Stage: Each of the individual proposals is fed into a CNN for feature extraction. This is visualized 

in Figure 24 (right). The utilized CNN is AlexNet from Table 2 proposed by Krizhevsky et al. (2012). Since 

CNNs can only be applied to a fixed input vector, the region proposals are warped to a size of 227 × 227 

pixels as seen in Figure 24 (left). 

Figure 24. Original R-CNN architecture without bounding-box regression: First stage: 

Region proposal extraction, second stage: Convolutional feature computation and third 

stage: Classification of region proposals (left). 

Based on Girshick et al. (2014a). 

Architecture after error analysis with focus on feature extraction using a CNN, classifica-

tion via SVMs and after both of those bounding-box regression on every region proposal 

(right). 

Based on Bharati and Pramanik (2020, p. 660). 
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Third Stage: This stage is responsible for the removal of false region proposals (i.e., proposals that do not 

contain an object) and for classification and refinement of region proposals. The removal is handled by 

adding one further class to the set of possible classes, which is considered as background. All region pro-

posals that are later assigned to this class will not be considered as objects and are thus removed from the 

results. For each possible output class (classes for objects and class for background), a linear SVM trained 

on that class calculates a score for the extracted features of each region. This equals to the one-versus-the-

rest multiclass SVM approach. As result, each region proposal is assigned a class. Afterwards, a linear 

regression model similar to Felzenszwalb et al. (2010) trained specifically for the detected class of a region 

predicts an improved bounding-box using information of the feature vector. 

Finally, per class but on all proposed regions, a greedy non-maximum suppression rejects all regions that 

have an IoU overlap above a learned threshold with another region having a higher score for the same class 

calculated by the SVM. 

R-CNN outperforms previous results by 30% (Girshick et al. 2014a, p. 11). 

However according to Girshick (2015, p. 1440), R-CNN has several drawbacks: Detection of objects is 

slow taking 47s per image on a GPU. The single stages have to be trained sequentially one after another 

and training requires a lot of memory and time. 

Discussion of Figure 24 (right) and its Source 

Figure 24 (right) is an altered and extended version of a figure provided in Bharati and Pramanik (2020, p. 

660). Both figures are visible side-by-side in Figure 25. 

The original figure displays the third stage of the R-CNN architecture with feature extraction performed by 

CNNs, classification using SVMs and bounding-box regression. Here, an individual arrow points from each 

Figure 25. Original version (left) and modified version (right) of figure from Bharati and 

Pramanik (2020, p. 660) in comparison. They both visualized the architecture of R-CNN 

with a focus on feature extraction, classification via SVMs and bounding-box regression 

for each region proposal. The original shows arrows from feature extraction to classifica-

tion and bounding-box regression while the modified version has an additional arrow 

pointing from classification to bounding-box regression. 
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CNN to bounding-box regression and classification indicating that both regression and classification utilize 

features generated by CNNs. According to Girshick et al. (2014b) however, regression not only relies on 

features but also classification since it is trained for each individual class and outputs the regression corre-

sponding to the detected class. Thus, not having an arrow point from classification to regression makes the 

figure incomplete. This is why another arrow has been introduced in the modified version. 

Fast R-CNN 

This section is based on Girshick (2015). 

Fast R-CNN was developed to provide solutions for the drawbacks of R-CNN by modifying the model 

architecture. The result of the modifications can be seen in Figure 26. 

Instead of running a CNN for every region proposal, a CNN processes the whole input image producing a 

feature map of the entire image. Therefore, the number of times the CNN must be calculated is reduced 

from around 2000 times to once per image. This is beneficial for speed of training and inference. 

The algorithm for identification of region proposals is not adjusted and in the paper on Fast R-CNN con-

sidered as external dependency. Each region proposal is projected onto the feature map produced by the 

CNN resulting in a rectangular cut-out of the map. Such a cut-out is named region of interest (RoI). 

Figure 26. Fast R-CNN architecture: 1. CNN and RoI projection on convolutional feature 

map. 2. For each RoI: RoI pooling layer, fully connected layers, split into branches for 

classification using fully connected layer and softmax activation, and bounding-box re-

gression. 

(Girshick 2015) 
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On each RoI, a RoI pooling layer is applied. This layer converts the features of a rectangular region of 

arbitrary size into a feature map with a fixed, reduced size. It does this by dividing the input region into 

approximately equally sized sub-regions, where the number of sub-regions amounts to the size of the fixed, 

reduced output feature map. On each sub-region, the RoI pooling layer then applies max-pooling resulting 

in a singular output value for each of them. A simplified illustration of this process can be found in Figure 

27. This layer is necessary to feed the information into the following fully connected layers, which can only 

process a fixed number of inputs. The result is a RoI feature vector for each RoI. 

For the third and final stage, classification by an SVM is substituted with a fully connected layer with 

softmax activation predicting the probabilities for each of the object classes in addition to a background 

class for RoIs that do not represent an object. The bounding-box regression is done in parallel and calculated 

for each individual class per RoI. Then, the calculated bounding-box corresponding to the detected class is 

chosen. 

To enable training of the whole network in one stage, a multi-task loss is calculated consisting of the loss 

function for classification as well as bounding-box regression. This simplifies training. In addition, as 

shown in the paper, it increases the mAP value. This can be explained by the fact, that both tasks (classifi-

cation and regression) can have an influence on each other, and while isolated training cannot take ad-

vantage of this connection, the multi-loss approach can. 

Faster R-CNN 

The statements of this section are based on Ren et al. (2017). 

While previous model architectures of this family (R-CNN and Fast R-CNN) utilized Selective Search, 

they are agnostic towards the actual algorithm used for generation of region proposals. This leaves space 

for optimization of that specific stage. Faster-RCNN introduces a region proposal network (RPN) that re-

places the previously used algorithm and jointly makes use of the already existing CNN feature map of Fast 

Figure 27. Simplified illustration of working principle of RoI pooling layer: Division of 

input region with size of 4 × 8 into 2 × 2 sub-regions with size of 2 × 4 and selection of the 

highest value as output value. 
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R-CNN. This eliminates the overhead added by selective search and keeps the computational overhead of 

the RPN itself light (overhead for region proposals is ~10 milliseconds). 

The integration of the RPN into the existing model architecture of Fast R-CNN can be inspected in Figure 

28. The feature map produced by the CNN was previously only used for regression and classification of 

region proposals. Now, the RPN uses this map as input. Its output, which are the suggested RoIs, are fed 

into the RoI pooling layer along with the feature map. 

Internally, the RPN produces RoIs by applying a sliding window on the convolutional feature map just like 

convolutional layers do and inputting each window to a network reducing the number of features. Then, 

this is fed into two fully connected layers, one for classification and one for bounding-box regression. 

However, classification and regression are not done only once but multiple times per window. This is be-

cause for each window, there are multiple so-called anchor boxes defined acting as base areas with different 

scales and aspect ratios (i.e., three scales of 128, 256 and 512, and three aspect ratios of 1:1, 1:2 and 2:1). 

While these anchor boxes are not actually present in the network, they are used as base areas in the loss 

function for training of classification and regression. As a result, the layer for classification uses softmax 

activation to obtain a probability distribution of the two possible outcomes for each anchor box: object or 

no object. The layer for regression outputs four values for each anchor box acting as offsets to the left, right, 

Figure 28. RPN utilizing convolutional feature map for region proposals. Thus, flow of 

information from the feature map onwards is split going into the RPN and the RoI pooling 

layer. Proposals generated by the RPN are also fed into the RoI pooling layer. 

(Ren et al. 2017) 
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top and bottom of the base area. Therefore, every anchor box receives a score for objectiveness (whether it 

is an object or background) and bounding-box regression. This process is visualized in Figure 29. 

Training of the whole network including the RPN takes place in the following four steps. At first, the RPN 

is trained end-to-end using a pre-trained model as CNN with initialized weights. As second step, everything 

except the RPN is trained using again a pre-trained CNN. Here, the region proposals resulting from step 

one are used. As third step, the trained CNN from step two replaces the one previously used for the RPN 

and only the layers belonging to the RPN are fine-tuned. This merges the two networks meaning they now 

both use a common CNN. As final step, all layers of the CNN and RPN are frozen, and all remaining layers 

are fine-tuned. 

For the steps involved in training of the RPN, the anchor boxes are an important part of the loss function 

and must have some definition of the desired output of the RPN for each of them. For regression, this is 

simply the difference between anchor box and bounding-box of the actual object if there is one. For ob-

ject/background classification itself, the following rules are applied. All anchor boxes with the highest IoU 

with a bounding-box of an object are considered as objects. Additionally, all anchor boxes with an IoU 

greater than 0.7 with a bounding-box of an object are labeled as objects. All those where IoU is lower than 

0.3 are seen as background. The remaining anchor boxes that do not meet any of the discussed criteria are 

ignored during training. 

2.7.2. Mask R-CNN 

The statements on Mask R-CNN are based on He et al. (2017). 

Mask R-CNN is based on Faster R-CNN. It is a framework that does instance segmentation in addition to 

object detection. Thus, it provides bounding-boxes and segmentations masks together with a class label for 

Figure 29. Window sliding over convolutional feature map producing offsets (left, right, 

top and bottom) and class scores (object or no object) based on anchor boxes as base areas. 

(Ren et al. 2017) 
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every object recognized in an image. Mask R-CNN can also be adapted to other tasks like human pose 

estimation. 

According to the authors, Mask R-CNN outperforms all frameworks that participated in the 

2016 COCO challenge. The challenge is a popular competition for image recognition frameworks and uses 

the Microsoft COCO dataset for training and evaluation (Ready for AI 2018). This challenge took place in 

the year before the publication of Mask R-CNN, which is why it did not participate in the challenge. 

Mask R-CNN runs relatively fast with about 5 frames per second (FPS). Training it is also fast. 

Model Architecture 

Mask R-CNN is based on Faster R-CNN and does not apply major changes to the internal structure of it. 

Mask R-CNN mainly adds a new, third branch for outputting masks to the model architecture of Faster R-

CNN. 

As can be seen in Figure 30, Mask R-CNN has the same first stage as Faster R-CNN with a convolutional 

backbone producing a feature map and an RPN for region proposals. 

However, the RoI pooling layer is modified. Previously, rounding was used to only get integer values for 

size and position of sub-sections. This results in misalignments, which are irrelevant for classification and 

bounding-box regression but have a negative impact on mask generation. For Faster R-CNN, this quanti-

zation was removed and replaced by bilinear interpolation for non-integer values. Thus, if a feature is to be 

sampled in between two integer positions of the feature map, it is not copied from one or the other location 

but interpolated between both of them best describing the input image at the actual location. The name of 

this updated layer is RoIAlign. 

Figure 30. Mask R-CNN architecture divided in Faster R-CNN with RoI pooling layer re-

placed by RoIAlign layer, and additional mask branch. 

(D. Schweitzer and R. Agrawal 2018) 
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While Faster R-CNN only predicts class and bounding-box for each RoI in the last stage, Mask R-CNN at 

the same time independently calculates a binary mask for each class. This is done by a fully convolutional 

network. 

Afterwards, the mask for the actual detected class is chosen as valid. This makes Mask R-CNN different to 

many other model architectures, for which classification and mask generation is coupled. 

Additionally, He et al. experimented with a different backbone. This DNN is named feature pyramid net-

work (FPN). Its structure processes input from large to small features and extracts feature maps at different 

steps of the process resulting in features of different scales. This FPN was found to perform much better 

than a conventional CNN as backbone. More on this type of network can be found in Lin et al. (2017). 

2.7.3. YOLO Family 

For many object detection model architectures, the process of detection is split up into multiple components, 

that must be trained separately. Model architectures of the YOLO family view the whole process as one 

single regression problem. They do not require multiple runs of individual components but only have one 

look at the input image and base their calculations on that. Hence, the name YOLO (You Only Look Once). 

(Redmon et al. 2016, p. 779) 

There exist multiple model architectures building upon the first version of YOLO and each other. The most 

popular and relevant of them being YOLOv1, YOLOv2, YOLO9000, YOLOv3, YOLOv4, YOLOv5, 

YOLOv6 and YOLOv7. In general, YOLO is mostly known for its high detection speed allowing for real-

time detection. The following sections will discuss the working principles and advantages and disad-

vantages of each of them in chronological order. (Ansari 2020, pp. 238–247; Jiang et al. 2022, p. 1069) 
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YOLOv1 

Statements on YOLOv1 are mainly based on Redmon et al. (2016). The entire process of detection is illus-

trated in Figure 31. 

At first, YOLOv1 divides the input image into a grid. Each of the grid’s cells is responsible for the detection 

of objects having their center in that cell. For each cell, multiple bounding-boxes and corresponding confi-

dence scores are predicted (I.e., prediction for one bounding-box consist of a height, a width, a horizontal 

and a vertical position as well as a confidence score telling the likelihood of this bounding-box containing 

an object). Independently and at the same time, the neural network calculates the most likely class for each 

cell. A combination of these predictions is used to determine whether the cell contains a real object and 

what its bounding-box looks like. All these calculations are performed by a large CNN composed of 24 

convolutional layers as well as 2 fully connected layers. The network can detect 20 different classes. 

The main limitation of this first version of YOLO is weak detection for larger groups of small objects. This 

is caused by the grid-based approach only allowing for one class and object to be detected per cell. For the 

same reason, YOLOv1 cannot detect object of different classes that are close to each other or have over-

lapping prediction. It is forced to decide for one class. Another issue is inaccurate prediction of bounding-

boxes in cases where the shape of a detected object of a certain class deviates from the objects of the same 

class seen during training. 

YOLOv2 

The following statements are based on Redmon and Farhadi (2017) in addition to (Ansari 2020, pp. 241–

244). The second version of YOLO introduces various improvements to eliminate the shortcoming of the 

first version. 

Figure 31. Detection pipeline of YOLOv1: 1. Division of input into grid, 2. For each cell: 

Simultaneous class prediction and bounding-box prediction, 3. Merging of both predictions 

into final detection results. 

(Redmon et al. 2016, p. 780) 
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Most notably, the part of YOLOv2 responsible for classification is fine-tuned standalone using input with 

higher resolution because this higher resolution is used during detection anyway. Training of the classifi-

cation network was previously performed using a lower resolution requiring the network to adapt later. 

Furthermore, all fully connected layers were removed and anchor boxes like the ones used for Faster R-

CNN were introduced. Therefore, multiple objects and classes can now be detected for every single cell 

(confidence score is not calculated per cell but per anchor box). While this leads to a slight decrease of 

precision, recall is improved significantly, and many more objects can be detected in a single input image. 

To increase dataset size for learning, YOLOv2 uses datasets for object detection and datasets for image 

classification. This is advantageous because classification datasets are more abundant and offer far more 

classes as labels. However, YOLOv2 does not make use of the additional classes and only uses datapoints 

for the same 20 classes offered by the object detection dataset. To be trained on these different types of 

training data, the following process has been implemented for learning. Whenever a datapoint offers bound-

ing-boxes as information, it is used to train the network end-to-end. However, if a datapoint only offers a 

class, the network uses this datapoint to further train only the classification part of the network. For such 

cases, all other parts of the network are frozen. 

A speed increase is also achieved by exchanging the convolutional backbone for a smaller one (Darknet-

19) requiring less computations per run. At the same time, this gave a small boost to detection accuracy. 

YOLO9000 

This section about YOLO9000 is based on Redmon and Farhadi (2017).YOLO9000 is tightly coupled with 

the advancements of YOLOv2 and was proposed in a single paper with YOLOv2. While YOLOv2 still 

detects only 20 different classes, YOLO9000 is able to detect 9,000 classes. 
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This is achieved by not only training the network on an object detection dataset and the part of a classifica-

tion dataset that has the same classes as labels but the whole classification dataset with all its classes. As 

mentioned in the section about YOLOv2, classification datasets usually offer far more training samples and 

many more classes than object detection datasets do. When mixing datasets with different classes, some 

classes are not mutually exclusive or represent a part of another class. To efficiently train YOLO9000 on 

all these classes, they are structured in a hierarchical tree as shown in Figure 32. 

As a result of this training process, the network did not have any training data containing bounding-boxes 

for many of the classes. Nonetheless, while some of these classes have very bad detection results, some of 

them are being detected quite well. According to the authors, the reason for this may be that some classes 

have related classes where bounding-boxes are known and can be derived from. However, other classes 

like clothes are not at all similar to anything seen in the object detection dataset. 

YOLOv3 

This version only introduces minor changes. The following explanations are based on the paper on 

YOLOv3 from Redmon and Farhadi (2018). 

Previously, the last layer of all YOLO versions used softmax as activation function to get class probabilities. 

This works well for mutually exclusive classes. Since the last version introduced a hierarchical structure of 

classes, that condition is not given anymore. Now, it is possible that a detection result fits well in multiple 

classes (E.g., an object can be a person and a woman at the same time.). Therefore, the activation function 

for the last layer calculates a logistic score for each class that is independent from other classes. 

Figure 32. Cutout of hierarchical tree structure assigning low-level classes to higher-

level classes. 

 (Redmon and Farhadi 2017, p. 6524) 
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Another improvement is the prediction of bounding-boxes at different scales. There is not one feature map 

on which bounding-box detection is performed but 3 of them. They are taken from different positions in 

the network. Because of the downscaling of the input during multiple convolutional layers, this means that 

bounding-box map to different sizes in the original input image. 

Finally, YOLOv3 uses a new convolutional backbone: Darknet-53. This CNN is larger and has shortcut 

connections meaning some outputs skip intermediate layers and serve as inputs for layers further down the 

layer stack. 

All of this makes YOLOv3 significantly faster and more accurate than the previous versions of YOLO. 

When compared to other network architectures, it is still faster but not always as accurate. 

YOLOv4 

At the time of its release, YOLOv4 was superior to other model architectures in speed and accuracy. This 

was achieved by implementing many minor changes. First of all, yet again a new backbone was chosen 

(CSPDarknet53). To improve training, different data augmentation techniques were applied. Activation 

functions were replaced with a new one named Mish (Misra 2019). There are other changes. However, an 

explanation of all of the would go beyond the scope of this thesis. (Bochkovskiy et al. 2020) 

YOLOv5 

No paper was published for the fifth version of YOLO and there is not one final and official implementation. 

Therefore, the naming is somewhat controversial. Information about YOLOv5 is taken from Jiang et al. 

(2022, p. 1069). 

YOLOv5 is the first version implemented using PyTorch as framework. This offers some usability advance-

ments compared to Darknet. Yet again, it uses a new activation function named Hardswish (Howard et al. 

2019, pp. 1317–1318) and applies data augmentation and enhancement (i.e., scaling, color space adjustment 

etc.). 

Accuracy of YOLOv5 is comparable to that of YOLOv4 while performance is moderately better. 
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YOLOv6 and YOLOv7 

The newest versions of the YOLO family are version six and version seven. Both versions are a group of 

multiple model architectures. Their performance compared to each other in addition to other model archi-

tectures is shown in Figure 33. The fact that this figure including both YOLOv6 and YOLOv7 is provided 

in the paper on YOLOv6 suggests that work on YOLOv6 started first, but the release happened after 

YOLOv7 was already published. Therefore, explanations will start with YOLOv7 followed by YOLOv6. 

YOLOv7 uses a new model architecture based on ELAN (efficient layer aggregation network) and named 

efficient ELAN. It implements additional minor changes for the training process. However, these improve-

ments were not invented by the authors of YOLOv7 but adopted from other sources. (Wang et al. 2022) 

The main thought behind the invention of model architectures grouped together under the name of YOLOv6 

were industrial use cases which have diverse requirements when it comes to speed and accuracy. The mod-

els use different backbones suited for the varying requirements. Among other improvements, some of the 

models use quantization. This is the concept of decreasing precision of continuous values by replacing them 

with some form of discrete values (Rokh et al. 2022, pp. 2–7). This can make models much more suitable 

for certain hardware used in the industry. (Li et al. 2022) 

  

Figure 33. Comparison of version five, six and seven of YOLO and additional model ar-

chitectures. The graph on the left plots AP for the COCO dataset as y-axis and latency as 

x-axis. The graph on the right uses the same y-axis but FPS as x-axis. In summary, YOLOv7 

outperforms other model architectures for some cases. Except for YOLOv6 which con-

stantly outperforms all other model architectures including YOLOv7. 

(Li et al. 2022, p. 1) 
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3. Related Work 

This chapter summarizes research papers with similar objectives to this thesis. I.e., papers about the detec-

tion of elements of GUIs. Furthermore, it points out similarities and differences. 

3.1. “Construction of GUI Elements Recognition Model for AI Test-

ing based on Deep Learning” 

C. Zhang et al. (2021) describe a possible way to recognize GUI elements in screenshots taken on a com-

puter running the Windows 10 operating system. The whole dataset consists of 3,000 images, all of which 

have been labelled manually. GUI elements are assigned to 10 different classes. 

After using this dataset for transfer learning on YOLOv3 and Mask R-CNN, the paper compares the mAP 

achieved using YOLOv3 and Mask R-CNN. Mask R-CNN slightly outperforms YOLOv3 with a mAP of 

99.985% compared to 98.513% and yields segmentation masks while YOLOv3 only outputs bounding-

boxes and classes. An example can be seen in Figure 34. Judging from the example, bounding-box and 

mask detection is quite accurate. Additionally, the paper compares the results after training on a third, two 

thirds and the entire dataset. For most classes, AP increased significantly with the number of images used 

for training. 

The objective of this paper is to provide GUI element recognition usable for automated GUI testing. For 

this, it uses YOLOv3 and Mask-RCNN. Insofar, it is quite similar to the goal of this thesis. However, it 

uses a desktop operating system (Windows 10) while this thesis uses a mobile operating system (Android). 

This results in different GUI elements to look for. Additionally, the datasets used in the paper consists of 

screenshots. This thesis uses camera images taken from a screen. 

While the objective and the way of labelling the dataset differs, the methodology of using deep learning 

and in particular Mask R-CNN to detect and segment elements is a similarity to the approach of this thesis. 

Figure 34. Example of results using YOLOv3 (left) and Mask R-CNN (right). 

 (C. Zhang et al. 2021) 
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3.2. “Detection and Segmentation of Graphical Elements on GUIs 

for Mobile Apps Based on Deep Learning” 

Hu et al. (2020) use deep learning for the detection and segmentation of GUI elements in mobile applica-

tions. The motivation behind their research is yet again automated testing of GUIs. 

The dataset of this paper differs from the one of the previously discussed paper. It is composed of screen-

shots from Google Play, Huawei AppGallery and part of the Rico dataset (Deka et al. 2017), which is a 

collection of 72,219 screenshots of mobile applications. The dataset consists of 2,100 screenshots and each 

GUI element is assigned to one of 8 classes. The labeling was done manually. In total, 42,156 GUI elements 

have been labeled. As model architecture, this paper uses Mask R-CNN. The achieved mAP is 98%. Ap-

pendix A shows visual examples of the results. Here, some bounding-boxes and masks are very accurate 

while others are shifted or distorted and do not match the true position of the element. Masks are always 

rectangular suggesting that only boxes were used for labeling of the dataset independently of the actual 

shape of a GUI element. 

In comparison to the previous paper, the paper of Hu et al. (2020) has more similarities with this thesis, 

which is trained on android applications and uses the Mask R-CNN framework. Up to this point, there is 

no difference between them. This thesis uses a camera image of the mobile device’s screen and automates 

dataset generation and labeling. This distinguishes it from the paper of Hu et al. (2020), where screenshots 

are used and labels are acquired by manual annotation. 

3.3. “Object detection for graphical user interface: old fashioned or 

deep learning or a combination?” 

In their paper, Chen et al. (2020) study existing attempts at GUI detection. In addition, they propose a new 

approach themselves. They do not have a specific goal building upon GUI detection but describe GUI 

testing and automation as possible use cases among others. 

The dataset used for all their learning and testing consists of 50,524 screenshots of 8,018 android applica-

tions. In total, these contain 923,404 GUI elements. 

Chen et al. compare deep learning approaches and old-fashioned approaches using classical CV algorithms 

like edge detection for GUI detection. They conclude that old-fashioned approaches are inferior to deep 

learning approaches. Old-fashioned approaches work acceptable for simplistic GUIs but get worse with 

increased complexity. Of all deep learning approaches, Faster R-CNN performed the best. Still, all of these 

have some problems with accurate bounding-box prediction. 



47  RELATED WORK 

 

The newly proposed approach by Chen et al. differentiates between GUI elements with and without text 

and provides separate detection pipelines for them. Text elements are detected using EAST, which stands 

for efficient and accurate scene text detection pipeline (Zhou et al. 2017, p. 5553). It is used for text detec-

tion in natural images (Zhou et al. 2017, p. 5551). For GUI elements without text, the authors use a hybrid 

approach with both old-fashioned and deep learning parts. Region detection is performed by a top-down 

classical algorithm. Region classification is done by a pretrained ResNet fine-tuned for GUI elements. This 

approach yields better performance than Fast R-CNN. Examples of detection for non-text GUI elements 

are given in Figure 35. In the examples, bounding-boxes appear to be very accurate. However, the approach 

sometimes detects multiple GUI elements as one or parts of one GUI element as individual units.  

The main differences between this thesis and the paper from Chen et al. are as follows. This thesis uses an 

automatically generated and labeled dataset and masks for detection whereas the paper uses manual labeling 

and bounding-boxes only. Additionally, this thesis uses a purely deep learning based approach. 

  

Figure 35. Four examples of non-text GUI detection using the new approach suggested 

by the authors of the paper. Edges of bounding-boxes accurately match edges of ele-

ments. Some elements are merged together while others are split into multiple bounding-

boxes. 

(Chen et al. 2020, p. 1211) 
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4. Methodology 

Chapter 1.2 Objective declares the research question of this thesis as follows: It shall be determined whether 

a neural network trained on an automatically generated and labeled dataset captured by camera provides 

any advancements in detection of interactive elements of GUIs compared to previous approaches. This 

chapter describes the theoretical approach taken to answer this question empirically. 

For this, an experimental setup as visualized in Figure 36 is created and later evaluated. The setup consists 

of multiple components interacting with each other. A modular design based on client-server architecture 

offers the possibility to modify the system and fit it to desired use cases in the future. 

To train a neural network, a dataset is needed. As discussed in the Chapter 1.1 Motivation, manual labeling 

may have some shortcomings that can be addressed by automatic labeling. Automatic labeling is only pos-

sible if the source code of the application is accessible. Therefore, a mobile application is programmed. 

This makes it possible to access all data relevant for the generation and labeling of the dataset. The mobile 

application displays randomized GUIs and has some way to provide information about interactive elements 

visible in the GUIs. 

This is used by a script to generate the dataset. The script creates a datapoint by performing the following 

tasks: It captures an image of a mobile device’s screen displaying the randomized GUI of the mobile appli-

cation. Additionally, it communicates with the mobile application to gather class labels and information 

about bounding-boxes and masks of interactive elements contained in the GUI.  For bounding-boxes and 

masks, two possible ways of gathering that information are as follows: Bounding-boxes and masks can be 

collected by transmitting their position and shape in abstract form as text via a client-server connection, or 

Figure 36. Individual components and their interaction with each other. A mobile applica-

tion provides random GUIs and information about the interactive elements for labeling. 

The GUIs are captured by a script that also collects the information about elements. From 

this, the script creates a dataset. This can be used for training and evaluation of a neural 

network. 



49  METHODOLOGY 

 

by altering the GUI and capturing an image of this. For the second approach, the mobile application paints 

the entire screen in black except for a single interactive element painted in white. The script for dataset 

collection captures an image of this view and converts it into a binary mask. This is repeated for every 

interactive element present. After the collection of all relevant information for a datapoint, the mobile ap-

plication creates a newly randomized GUI, and the process is repeated until the whole dataset is populated 

with datapoints. 

Finally, a neural network is trained on this dataset. The dataset is split into two parts: A training dataset and 

a test dataset. The test dataset is kept from the neural network during training. After training, it is used to 

evaluate the performance. 

There are certain constraints and requirements for the individual components of the setup, which must be 

respected during implementation to produce meaningful results: 

Since a neural network can only learn patterns present in the given data, the mobile application providing 

the data must generate GUIs, that are representative for real-world mobile applications. To achieve this 

goal, the randomized GUIs displayed should include interactive elements with varying appearances similar 

to those of real-world mobile applications and also as many different styles as possible for every type of 

element. One GUI should contain many interactive elements because this results in more training data using 

less storage space and memory. Additionally, it must offer an interface to allow access to the following 

data: Classes of interactive elements and accurate information about their shape and position. It must also 

offer an interface on which the mobile application listens to commands of the dataset collection script. A 

possible command would be to demand a new randomized GUI. 

The script creating the dataset must capture GUIs and the provided information about the interactive ele-

ments and save all of it in a format that can be understood by the learning algorithm of the neural network. 

The dataset must have an appropriate size. It seems reasonable to use a dataset size that is similar to the one 

used in related papers to make them comparable and since they prove that this size can yield useful results. 

Since the third related paper uses a huge dataset requiring much more processing power, the aim for dataset 

size in this paper is to come close the size for the first and second related paper. This requires about 2000-

3000 images. Furthermore, the format of the dataset must be capable to store information about position 

and pixel-accurate shape of interactive elements. This could either be the geometrical shape or a binary 

pixel mask of the GUI image. 

The neural network trained on the resulting dataset should be capable of providing good accuracy on a per-

pixel basis while still running decently fast (I.e., perform detection in well under a second). Otherwise, it 

would not be suitable as part for an efficient (robotic) testing framework. 
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For this experiment to answer the research question, it is evaluated and compared to related work as a final 

step. The testing part of the dataset is used to deduce numerical metrics as well as provide visual examples 

to judge accuracy. To gather more intel about its accuracy on real-world mobile applications, the neural 

network is also tested on GUI images of real-world mobile applications. This can only lead to a visual 

inspection of a small number of visual examples, since an appropriately-sized dataset for numerical metrics 

with per-pixel segmentation does not exist and creating one is not scope of this thesis. Apart from that, 

labeling of this dataset would have to be done manually. As discussed, this may produce inaccuracies which 

possibly invalidate numerical metrics derived from evaluation on such a dataset. 
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5. Implementation 

This chapter explains implementation and practical parts of this thesis and their underlying thoughts and 

decisions. It follows the order of Chapter 4 for explanation of the components. 

Before diving into the implementation of each of the components, it is useful to know about the communi-

cations between the individual components. After this, the mobile application for randomized GUIs and the 

scripts for dataset collection are explained. Then, implementation details of the DNN are discussed and 

finally the entire practical workflow for dataset collection and training of the DNN is shown. 

Apart from the training and test implementation, the DNN needs an interface that lets other applications 

access the inference results produced. This has been implemented but is not described as part of this thesis 

because it is not required to evaluate the performance of the DNN and therefore not part of the research 

objectives. 

For the understanding of communications and the components architecture, it must be explained how posi-

tion and shape of interactive elements are supposed to be transmitted to the dataset collection script. In 

chapter 4, two ways of transmitting position and shape were presented. It can be done either by sending 

position and shape as textual information or by painting an individual element of the GUI white and every-

thing else black, capturing an image of this, and processing this image to acquire a binary mask. The former 

approach can only provide positional information in relation to the screen. Because GUIs are not captured 

as screenshots but via a camera, this would require access and further processing of the information in 

addition to knowledge about the position of the screen in the captured image. These issues can be evaded 

by using the latter approach. If processed properly, the resulting binary mask after processing should accu-

rately represent position and shape of an element in relation to the captured image of the GUI. There is 

another advantage to this approach. If an element is occluded by another one, the application itself would 

calculate the part of the element that is still visible and only display this part in white. Otherwise, this would 

also require additional computations. For this approach, images of the GUI itself and of additional screens 

each highlighting an individual element are taken one after another. 

Back to the communication. The mobile application provides a server to be accessed by the dataset collec-

tion script. This connection allows the script to get information about classes and request state changes of 

the mobile application (I.e., new random GUI or black and white mask for an element to be captured by 

camera.). The script outputs a dataset in the form of a directory. This directory is used for training of the 

DNN. Each datapoint consists of a GUI image, multiple mask images and a data file with class names for 

each element. An outline of all communications in order of their execution is illustrated in Figure 37. 
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5.1. Android Application 

As discussed, the main goal for the mobile application is to obtain randomized GUIs where interactive 

elements are representative for those of most real-world mobile applications. Material Design is developed 

by Google, used as standard for android applications and adopted by many other developers. Because an-

droid itself has the highest market share for mobile operating systems, using Material Design 3 as base for 

GUI design seems logical. One could use multiple design frameworks, but Material Design 3 alone provides 

a good compromise between the effort required for implementation and requirements of representative in-

teractive elements. 

With Material Design as design framework, the mobile application can be implemented as a native android 

application, flutter application or web application. Because of the author’s previous knowledge and famil-

iarity with native android applications and no obvious downsides of using native android as compared to 

Figure 37. Outline of communications between components in order of execution. The da-

taset collection script serves as client accessing the mobile application acting as server. 

The script orchestrates collection of each datapoint and saves all information in a direc-

tory. For a single datapoint, it starts by requesting a random GUI. Then, it asks for infor-

mation about classes of elements. For every element in the GUI, it requests, captures, and 

saved the mask. Afterwards, the DNN uses this directory as dataset for training. 



53  IMPLEMENTATION 

 

flutter or web for the task at hand (cross-platform capabilities are not needed for generation of a dataset), a 

native android application is chosen for implementation. As result, the code of the mobile application is 

written using Kotlin as programming language. GUIs are programmed using Android Compose where ele-

ments of a GUI are expressed as functions annotated with “@composable” in source code. 

The architecture of the android application is as follows. A file named MainActivity servers as entry point 

and makes use of other files and classes to orchestrate GUI creation, data management and communication. 

Class State keeps track of information required for labeling, for rendering of the GUI itself, and for black 

and white masks for every element. Class Registry saves class names of all elements. A file named Ran-

domElements contains all functions for generation of random elements. File Probabilities only consists of 

probability values used for the generation of random elements. File Utils provides helper functions. All 

these classes and files are shown in Figure 38. There are some additional files that mainly serve a single 

purpose for files and classes already discussed. Because of this, they are excluded in the figure and will be 

explained as part of sections about other files and classes. 

File MainActivity 

The contents of this file are shown in Figure 39. When the android application is started, it executes the 

method onCreate(..) of the class MainActivity. Since all we care about is the application itself and we cannot 

make use of a displayed notification bar at the top or a navigation menu at the bottom of the screen (I.e., 

there is no way to produce masks for these and therefore they cannot be used for learning.), this function 

hides them. Additionally, it makes sure that the screen never turns off after a certain time of inactivity 

Figure 38. Most relevant classes and files of the android application for randomized 

GUIs: MainActivity, State, Registry, Utils, Connection, Random Elements, and Probabili-

ties. 

Figure 39. Contents of file MainActivity: Class MainActivity and composable function 

RandomApp. 
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because this would cause the screen to go black during collection of the dataset. Finally, the method calls 

the composable function RandomApp(..) that is responsible for displaying the GUI. 

This function delegates the creation of most of the randomized elements to composable functions in file 

RandomComponents. However, there are some things this function takes care of by itself. 

The function creates an instance of class State to keep track of the current state.  It overrides a function of 

this instance that replaces the instance with a copy of it whenever a change in state occurs. This is necessary 

because changing the variable triggers recalculation and rerendering of the GUI. Only then are all GUI 

elements automatically updated to represent the new state. More explanation on this will follow in the 

section about this class. 

Based on some probability defined in file Probabilities, the function sets the theme of the GUI as light or 

dark mode. In combination with this, the function uses function randomColorSchemes() defined in an ad-

ditional file named Color to apply a more or less random color schemes to the GUI. This function randomly 

selects one out of 10 color schemes, which were created using the Material Theme Builder (Material Theme 

Builder n.d.). Here, primary colors were chosen, and all other colors generated by the builder. The colors 

of the exported themes were then added to the file Color. 

Furthermore, the function RandomApp(..) adds a basic layout to the GUI in which randomized components 

can be placed. This layout offers the option for a TopAppBar, a FloatingActionButton, a BottomBar for 

navigation, and content filling the center of the screen. The content is populated with two nested columns 

that add 13 random elements to the GUI using the composable function RandomIE(..). The number 13 was 

chosen because it ensures that most of the screen space is used for random elements, but no overflow is 

occurring. Additionally, the columns can display some buttons used for debug purposes if a variable debug 

is set. Together, they randomize the look by switching between left, right and centered alignment of content. 

Because the contained elements have different widths, this results in diverse positioning of elements. This 

is supposed to help make the GUI representative for real-world applications. 

Finally, function RandomApp(..) creates an instance of class Connection to open a channel for communi-

cation with the dataset collection script after everything is set up. If there already is an active instance, no 

new instance is created but its reference to the application’s state is updated. This is because for every 

datapoint a new instance of class State is created and used. 
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Class State 

Class State keeps track of the current state of the application and enables state changes. For this, it uses 

various variables and functions as displayed in Figure 40. GUI elements change their appearance based on 

the information provided by this class. 

Variable mask decides whether the GUI itself is shown or the mask for a one of the elements (I.e., this 

element is painted white and everything else black.). Variable idOfMaskElement contains the ID of the 

element whose mask is currently shown. Variable Registry is used to assign IDs to all elements and store 

their corresponding classes. More on this in the section about the Class Registry. Variable onStateChanged 

has already been touched on in the section about file MainActivity. It stores a function to be executed as 

callback whenever a state change occurs. 

The first constructor State() is used to create new instances of the class. The second constructor State(..) 

serves as copy constructor. I.e., it is used to create a new instance of class State with identical variables to 

the instance provided as argument. 

Method nextState() contains logic to switch to the state that is supposed to follow the current state. First, it 

switches from GUI to masks. Then, it increments the ID of the element whose mask is displayed. In addition, 

it triggers the callback function saved in onStateChanged() that replaces the current instance with an iden-

tical one newly created. This is necessary because only then can GUI elements detect this change and adjust 

their appearance according to the new state. 

Method copy() simply returns an identical instance to the one the function is called on. For this, it uses the 

copy constructor. 

Figure 40. Content of class State. Shows variables(top) and methods(bottom). 
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Class Registry 

Contents of class Registry are shown in Figure 41. Variable numOfElements tracks the total number of 

interactive elements already created. Variable data uses JSON format to store IDs of elements together with 

their class. 

Method registerElement(..) adds ID and class to variable data and returns the ID, which is also stored inside 

each element for identification during state changes. 

File RandomElements 

As visible in Figure 42, file RandomElements provides composable functions for all interactive elements 

to be displayed. All of them take the applications state as argument because this way they can listen to state 

changes and automatically adapt their appearance accordingly. 

Figure 41. Variables and methods of class Registry. 

Figure 42. All composable functions of file RandomElements. 
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The first function RandomIE(..) serves as a wrapper for other interactive elements. It randomly selects one 

of the possible elements and displays it. It does this according to a probability distribution provided in file 

Probabilities. 

All other composable functions mostly work in the same manner. If the application’s state requires the GUI 

to be displayed, they show their corresponding element. This is the first possibility. Usually, the appearance 

is somewhat randomized. E.g., a button is either displayed as simple text, in a filled box or an outlined box. 

If the state requires the mask of an element to be displayed, there are two more possible cases that can occur. 

Whenever the ID saved as part of the element matches the ID of the active mask element saved in the 

application’s state, the shape of the element is filled with white. Otherwise, it is filled with black. Some of 

the functions require text that can be displayed. This functionality is provided by the function randomText(..) 

of file Utils and will be discussed further in the section of that file. 

Class Connection 

Class Connection is responsible for communication with the dataset collection script. As discussed before, 

it does so by providing a server the script can connect to as client. It propagates requests to other parts of 

the application and responds with requested information. Internals of class Connection are displayed in 

Figure 43. 

Figure 43. Variables and methods of class Connection. 
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The variables port, server, client, input, and output are used for operation of the server. Variables state and 

activity are needed for the propagation of requests to their destination. 

The constructor starts a server on the specified port. Then, it launches the method listen(). This method 

contains most of the logic. In an infinite loop, it does the following. At first, it calls the method establish-

Connection() that waits for a client to connect and establishes communication channels once a client has 

connected. Then, it reads the incoming request and processes it. JSON is used as format for all communi-

cations. Requests and Responses always have a header and a body part. For responses, the helper method 

sendResponse(..), converts header and potentially body into the required format. The possible requests and 

their responses are shown in Figure 44. 

If the request is “ready?”, the response tell the dataset collection script that the GUI has finished rendering 

and is ready to be captured by camera. If the request is “classes?”, the IDs of all elements and their classes 

are sent back as body of the response. If the request is “next state?”, the method nextState() of the variable 

state is called before answering with an acknowledgment. As discussed, this method changes the state and 

triggers rerendering of the GUI according to the new state. If the request is “randomize?”, an acknowledge-

ment is sent, client connection and server are closed using methods closeClientConnection() and close(), 

and the method recreate() is called. The last method causes the instance of class MainActivity used for the 

GUI to be destroyed. Then, a new instance is created and its method onCreate(..) is executed effectively 

restarting all calculations performed so far resulting in a newly randomized GUI. 

The setter method setState(..) and the method isClosed() are used externally to set and get properties of this 

class. The former allows the state instance to be replaced in cases where the connection is reused for a new 

Figure 44. Possible requests and their responses with header and body. 
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randomized GUI. This can happen if the connection is lost, or randomization is triggered from somewhere 

else like the button available in debug mode. The latter returns whether the server is still running or not. 

File Utils 

The internal of file Utils as seen in Figure 45 all provide some support functionality. The first two functions 

probToBool(..) and probsToIndex(..) take in probabilities and returns a truth value or a number based on 

those probabilities. 

Function randomText(..) returns a text that conforms to the restrictions received as parameters. The char-

acters of all words are chosen at random. The first character is always capitalized. The idea behind this 

approach is, that interactive elements usually adhere to these criteria. A more sophisticated solution would 

be a dictionary of words that are likely to be used but this would require extensive research and many 

considerations to provide a more useful text to be displayed in differing types of interactive elements. How-

ever, this approach cannot produce representative text for any language that uses non-Latin characters or 

are written from right to left. Also, there might be some hidden underlying pattern to text of interactive 

elements that is not present in the dataset when using this approach. 

Method onCondition(..) makes the use of conditional modifiers for GUI elements easier because this allows 

them to be applied in one line of code. 

Function clipIntInclusive(..) should be self-explanatory. 

Function randomHorizonalAlignment() return one of the possible alignment types (left, right and center) at 

random. 

File Probabilities 

This file only contains variables storing probabilities for various decisions made during GUI creation. Apart 

from being chosen as values that seem like a good fit to the probabilities in real-world applications, there 

Figure 45. Functions and methods of file Utils. 
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is no deeper underlying concept to them. E.g., apps are more likely to be used in light mode than in dark 

mode, or buttons are more often used than text fields. 

Visual Results 

Some examples of GUIs generated by the application are shown in Figure 46.  

5.2. Dataset Collection Scripts using Python 

The component for dataset collection must be able to communicate over the network, access a camera and 

process the images taken. It must also be able to work with files. All of this can be done using Python with 

the OpenCV library (OpenCV 2022) among other libraries. Since the DNN component is also written in 

Python (at least the part of it that needs modification), the reusability of some of the code is an additional 

advantage when using Python. 

To be adaptable to different setups used for dataset collection, the management of collection itself and the 

capturing of the mobile application’s screen with the android application is split up into two Python scripts. 

Again, the communication works by having the camera act as a service that the managing script can access. 

Thus, the camera script starts a server to which the managing script can connect as client and request an 

image whenever needed. 

Figure 46. Three examples of GUIs generated using the application described above. 
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Image Capture Script 

This script starts with the initialization of some variables. The IP address and port of the server, and the ID 

of the camera to be used are specified. 

Because so far, the images for the dataset are not taken in the environment the DNN will be deployed in, 

the background surrounding the mobile device does not provide any useful information for the dataset. 

Furthermore, the background can interfere with the generation of masks out of the black and white screens 

provided by the application. Therefore, the image capture script is responsible for removing the background. 

To do this, the capture script displays the view of the camera and lets the user select a color and thresholds 

to filter the camera image for that color. This is saved as binary mask that paints everything black except 

for the part selected by the user. This part is left as provided by the camera. Ideally, this removes everything 

but the screen content from the images. 

After this, another view of the camera is displayed. Here, the user can crop the image to remove black areas. 

Because masks must be provided as binary image of black and white, this view also lets the user select 

another threshold. This threshold is used to paint everything underneath that value black and everything 

above it white. 

Now, all data necessary is collected and the server can be started. The server listens for connections and 

handles them in the following manner. If the request asks for an image, it provides the cropped image of 

the screen with black background. If asked for a raw image, it responds with an unedited image of the 

camera. If asked for a mask, it answers with a cropped binary mask of the screen by using the threshold 

determined earlier to decide what to paint black and what white. To send the images, they are encoded in 

the base64 format. 

Managing Script 

Like the previous script, the managing script starts with the initialization of some variables. These variables 

determine dataset size and directory, and IP address and port of the android application as well as the camera 

script. 

Next, it defines a class named Dataset to handle most operations used in the following main loop. The class 

and its variables and methods are shown in Figure 47. The constructor saves size and path of the dataset 

and sets the current size to zero. The next four methods handle the connection to the server of the image 

capture script and requesting and saving of images and masks. Because of network connectivity issues, they 

use quite a small value as timeout to retry connecting frequently. Otherwise, dataset collection would take 

much longer when there is a problem with the connection. 
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Method saveAnnotations(..) takes in relayed data provided by the android application and saves IDs and 

classes of elements as JSON file. Method makeRequest(..) handles connection to the android application. 

Finally, an instance of class Dataset is created, and the main loop started. This loop is repeated until the 

current dataset size is equal to the desired dataset size. 

The loop follows the protocol of Figure 44 shown in the section about the android application. It starts by 

asking if the android application is ready. After a short delay, it requests an image of the screen from the 

image capture script and saves it. Then, is asks for information about the classes and saves this. For every 

element, it asks the application for a mask, waits for a small period, requests an image of the mask from the 

image capture script and saves this image. Finally, it requests a new randomized GUI from the android 

application and continues from its beginning for the next datapoint. 

The small delays were added because without them, the camera sometimes captures a blurry image. We 

suspect this to be caused by two problems. First, the GUI may have finished rendering but the camera either 

has an internal delay when providing images or simply a quite long exposure time and this results in the 

image being a mix of both the current and the previous GUI displayed. Second, big changes of the camera 

image trigger refocusing of the camera which also blurs and distorts the image. 

5.3. Mask R-CNN 

The third component of the implementation is the DNN itself. Different model architectures have been 

explained in section 2.7. The YOLO family is very popular and widely used. However, its main advantage 

is the detection speed. While detection should not be much slower than real-time to be used in a robotic 

testing framework, performances far better than real-time detection do not offer any benefits. The main 

bottleneck is most likely going to be the movement speed of the robot. 

Figure 47. Variables and methods of class Dataset. 
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Because of this, accuracy is much more important as long as detection speed is not unreasonably slow. The 

newer model architectures of R-CNN meet this requirement running detection at about 5 FPS. They also 

provide good accuracy. But ultimately, detection using bounding-boxes only has two mayor flaws. 

First, it cannot properly describe the shape of elements that are not composed of a rectangle. But many 

elements consist of different shapes. E.g., buttons can have rounded corners, sliders consist of a line with a 

circle indicating the current position, and switches are also more complex. 

Second, if the screen captured is tilted or rotated, even rectangular elements are distorted and cannot be 

described well using bounding-boxes whose edges are aligned horizontally and vertically. With increasing 

rotation of an element, bounding-boxes contain more and more pixels that do not belong to the element. 

To fix both issues and be able to detect arbitrary shapes accurately, a binary mask is needed. This is possible 

using instance segmentation. 

For all reasons stated above, Mask R-CNN was chosen as model architecture. It is fast enough for the use 

case at hand, accurate, and performs object detection and instance segmentation. 

The specific implementation of Mask R-CNN used in this thesis is provided as GitHub repository by Ab-

dulla (2017). It is implemented in Python using Tensorflow. Its backbone is a feature pyramid network 

based on ResNet101 as base. According to the author, the implementation deviates from the official paper 

on Mask-RCNN in the following points: Image resizing, bounding-boxes, and learning rate. The points are 

explained in more detail in Table 3. 

Table 3. Differences between implementation by Abdulla and official paper by He et al. according to Ab-

dulla (2017) . 

 Implementation by Abdulla Official paper by He et al. 

Image Resizing: 

Aspect ratio is kept, and images are 

resized to fit inside a square of fixed size. 

If an image is not square, remaining pix-

els are filled with black. 

All images are resized so that the 

smaller side is 800px long. Then, the 

larger side is trimmed to be not larger 

than 1000px. 

Bounding-Boxes: 

Generates bounding-boxes by calculating 

the smallest box encapsulating the entire 

Uses bounding-boxes as provided in da-

tasets. 
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masks provided by the dataset for an ob-

ject. This allows image augmentation like 

rotation to be applied. 

Learning Rate: 

Uses learning rate of 0.001 to prevent 

weights from getting too large. 

Uses learning rate of 0.02. 

 

To train this implementation of Mask R-CNN on the dataset created by the dataset collection script, a 

sample script for the detection of geometrical shapes provided with the implementation was modified and 

a docker image created that contains all necessary libraries and has access to the GPU. Most modifications 

required were made in the classes IEConfig and IEDataset and are covered in the next two sections. After-

wards, some additional implementation details are discussed. IE stands for interactive elements. 

IEConfig 

The class IEConfig extends the class Config provided by the Mask R-CNN implementation and mainly 

contains multiple variables defining parameters used for training. The most important ones are explained 

in the following paragraphs. 

Variable CLASSES contains all eleven classes occurring in the dataset. Namely, these classes are “Menu”, 

“BackButton”, “MoreOptions”, “FloatingActionButton”, “NavigationBarItem”, “Button”, “Checkbox”, 

“RadioButton”, “Switch”, “Slider” and “TextField”. 

Variable AUGMENTATION contains a class that defines a series of image augmentations to be applied to 

the images in the dataset before using them for training. In order, these augmentations are the following. 

Rotation and scaling of the input image, changes in contrast, and changes in brightness. Each of them has 

a probability of 50% to be applied. It is important that the order is preserved because if contrast or brightness 

were to be changed before applying rotation or scaling, the outline of the original image would be visible 

(black in the original image would not be black anymore, but black filling missing pixels would be resulting 

in visible color difference at image edges). 

Variable INIT_WITH is initialized with value “coco”. This tells Mask R-CNN to load pretrained weights 

before starting the training. The weights are result of previous training of Mask R-CNN on the COCO 

dataset. 
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IEDataset 

Class IEDataset is responsible for loading and management of the dataset provided by the dataset collection 

script. For this, it extends the class Dataset defined in file utils.py of the Mask-RCNN implementation. The 

overwritten and added methods are shown in Figure 48 and discussed in the next paragraphs. 

Method train_test_split(..) divides a single dataset and returns two distinct portions of it as new datasets 

that can be used for training and testing of Mask R-CNN. 

Method add_classes() saves all classes given in class Config to the dataset and assigns each of them an ID. 

Method load_ie(..) starts by executing method add_classes(). Then, it uses the JSON files to go through 

every datapoint. For each of them, it saves a datapoint ID, the common part of the path for all files belonging 

to that datapoint, width and height of the input image, and a list of class IDs of all elements present in the 

datapoint. For the list of class IDs, it uses method get_index_of_class(..) which returns the ID for a given 

class name. 

Method load_image(..) uses the ID of an image to load and return the actual image. 

Method load_mask(..) loads all masks for a datapoint. They are returned as a three-dimensional array where 

the first two dimensions are height and width of the mask of one single element and the third dimension is 

the number of masks for all elements of that datapoint. 

Additional Implementation Details 

Apart from everything discussed so far, the script uses an additional tool named wandb (Weights & Biases 

– Developer tools for ML 2022) for tracking of the training. It provides graphs with metrics and summaries 

about all runs, which are very helpful. It is used by adding wandb as library and executing some code before 

and after training to start and finish tracking. 

Figure 48. Methods of class IEDataset. 
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5.4. Workflow for Dataset Collection and Training 

After having looked into the implementation details of all components from a coding perspective, this sec-

tion provides a different point of view showing the workflow of dataset collection and training of Mask R-

CNN in practice. 

For the dataset collection, some setup steps are required. At first, the variables IP, port and debug mode for 

the android application are set in the integrated development environment (IDE) and the application is 

compile and transferred to a mobile device The device used is a Samsung Galaxy S21 FE 5G running on 

version 13 of the android operating system. IP must match the IP of the mobile device in the network used 

for communication since it is used to start a server. Debug mode should be enabled for a following step. 

Because the mobile device and the camera capturing it should not be moved after starting this process, both 

are placed in a secure spot where there is no interference to be expected. 

After this, the image capture script is configured. The variables for IP, port and camera ID must be set. 

Since this is a server, the IP must match the IP of the computer running the script in the network used for 

communication. To create a mask that filters out everything except the screen, the screen of the mobile 

device is filled with a distinct color (E.g., opening an image in fullscreen mode that contains only green 

pixels.). Now, the image capture script can be started. It will display two windows. One of them can be 

used to select the color on the screen by clicking on it and provides sliders to adjust threshold of hue, 

saturation, and value. The other window gives feedback by showing the current result of applying the mask 

for removal of background surrounding the screen. This is shown in Figure 49. 

 

Figure 49. First window shows image of mobile device with green screen and sliders for 

thresholds. Second window shows the resulting binary mask after selecting the screen color 

by clicking it and adjusting the sliders. 
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When pressing “q”, the currently shown windows are closed and the script continues by opening another 

window. This one is used to crop the image to remove unneeded background and to select a threshold value 

that will later decide whether to paint a mask pixel black or white. The cropping is done by pressing the 

left mouse button when pointing at the upper left corner of the desired rectangle and then pressing the right 

mouse button for the lower right corner. This reduces the storage space required for the dataset. The window 

before and after cropping is shown in Figure 50. 

To decide for a threshold value, the android application was started in debug mode. This way, the applica-

tion’s state can be advanced to display a mask. Now, a threshold is chosen using the image shown in the 

window as feedback. Usually, a value in the middle around 124 is a good fit. Again, pressing “q” closes the 

window. Finally, the last part of the script is executed starting the server. Figure 51 shows the window with 

an appropriately chosen threshold to filter for masks. It also shows the process of converting the raw image 

into a binary mask. 

Next, the button for turning off debug mode in the android application is pressed. At this points, android 

application and image capture script are ready. After entering the required variables IP and port of the 

android application and image capture script, and desired dataset size and path, the dataset collection script 

is executed. This automatically creates the entire dataset and saves it to the specified path. We used a dataset 

Figure 50. Window before and after cropping. Most pixels that are not part of the screen 

were removed. 
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size of 2000 datapoints. The collection of these datapoints took about 4 hours and 50 minutes. Therefore, 

collection speed was roughly 6.9 datapoints per minute. Some examples for datapoints with GUI and masks 

of the four classes appearing most often are given in Figure 52. 

Figure 51. Window with threshold chosen based on the mask displayed (left). The other 

images show the processing applied to the raw image to obtain a binary mask. From left 

to right, the following steps are performed: Painting everything black except for the screen. 

Applying threshold to generate a binary output which is then inverted and shown in the 

image on the right. 

Figure 52. Each row represents one datapoint. The first image in a row shows the GUI 

captured by camera, which is the input image for training. The following images in each 

row display masks of all objects of the four classes appearing most often in the GUI. Each 

mask instance is colored in a different shade. 
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The script for training of Mask R-CNN is executed next. The dataset is loaded and split into training and 

test data. Training data is made up of 80% of the original dataset, which is a common percentage for split-

ting training and test data. As result, the training dataset contains 1600 datapoints and the test dataset con-

tains 400 datapoints. 

Finally, the training is started. As suggested by the authors of the Mask R-CNN implementation, training 

is started with the backbone fixed. Only the randomly initialized layers not part of the CNN are trained 

using a learning rate of 0.001. After this, all layers are fine-tuned using a reduced learning rate of 0.0001. 

Because the backbone was trained on images of real-life scenes, we suspect the learned weights to be useful 

but not quite ideal for the detection of GUI elements shown on a screen. Therefore, we believe that fixing 

these layers can quickly become a limiting factor for learning. To prevent this, training with fixed backbone 

is only run for 20 epochs and after this all layers are adjusted during fine-tuning until epoch 150. As shown 

later, the graph of the loss functions confirms this hypothesis. After unfreezing all weights, the rate of 

improvement increases. 

5.5. Problems 

This section points out some issues and difficulties that occurred during implementation. While most prob-

lems appeared early in the process and were resolved, some appeared quite late or are still present. Most 

notably, those problems are the following: 

The quality of the camera available is not ideal. Its resolution is quite low, which is not the main issue 

because usually computer vision tasks can be performed well on low resolution data. It is even beneficial 

in some way as it increases training speed. However, the camera used also introduces some blur/glare in 

images. This is probably caused by the high contrast especially present in the black and white masks. 

Another issue cause by the camera was only detected after the collection of the dataset. It seems that even 

though there is a delay between the capture of images, the camera sometimes refocuses. This produces 

changes in size of the captured scene which in turn resulted in some masks not perfectly fitting the position 

and shape of the element inside the GUI. Some examples are shown in Figure 53. 
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According to accuracy measures for different datapoint, this issue occurred randomly for some of the data-

points. It did not occur consistently, and the accuracy did not deteriorate over time.  It also did not occur 

only for light mode or dark mode used in the GUI. This suggests that the issue cannot be fixed by increasing 

the delay because then the issue would be expected to show up in all datapoints. Furthermore, it cannot be 

caused by changes of lightning conditions during the dataset collection or accidental changes in the physical 

setup (E.g., bumping into the camera or mobile device or a slow movement of the camera because of phys-

ical instability of the setup.). This would have resulted in a trend over time. The best guess is that this 

refocusing is happening at random and can only be removed by using a different camera. 

Another problem occurred when converting masks saved as images back to binary masks. This was discov-

ered after training was finished and therefore training had to be repeated. We expected the images to contain 

white and black pixels only. However, compression changed some pixels to grey shades although we ex-

pected the image format (.png) to apply compression in a way that does not do this. Either the format itself 

did this or some conversion during processing produced this problem. Because of this, the way of reading 

in masks was flawed and had to be adapted. It changes some pixels that are part of a mask to non-mask 

pixels. 

Because of the way the elements were implemented in Material Design, some elements could not be simply 

painted in black to get a mask of their shape. E.g., the radio button either displayed a hollow circle or 

painted a bigger rectangle around its shape. Therefore, some tricks were needed to receive a valid and 

Figure 53. The two images show GUIs captured overlayed with all their corresponding 

masks. In the first image, all masks appear to be scaled down, which makes them smaller 

and move towards the center of the image. In the second image, the opposite seems to be 

the case. Because each individual mask is taken one after another, this implies that focus 

changed only once after taking the GUI image and before taking all mask images. 
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accurate mask. In this example, a rounded white border was painted around the black rectangle to get a 

circle of the size of the radio button. However, this has the disadvantage that masks of elements behind the 

radio button would not be displayed properly because of the white border overlaying the mask. Since this 

dataset rarely has interactive elements overlapping each other and since the items occluding other are al-

ways either the FAB or the BottomBar, this is no problem now. However, it must be handled if the feature 

of occluded masks was to be used more heavily in a future dataset. 

Finally, dataset collection took a long time as mentioned before. Theoretically, this could be improved a lot 

by minimizing delays. However, problems with the camera used were the limiting factor. A different cam-

era should allow for a speedup of the process. This in turn would make the generation of large datasets 

much more convenient. 
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6. Evaluation 

To judge the performance of the trained DNN, numerical metrics and visual samples are used. At first, 

different runs are compared. Afterwards, the DNN is evaluated on the test dataset of this thesis and GUIs 

of real-world android applications. 

Training was conducted using an Intel i7-4790k as CPU and an Nvidia GeForce RTX 2060 SUPER as GPU 

on a machine running Kubuntu 20.04 as operating system. As discussed before, learning rate was 0.001 and 

the backbone was frozen for the first 20 epochs. For all other epochs, learning rate was 0.0001 and all layers 

were trained. All runs whose loss functions are plotted in Figure 54 show a faster improvement after epoch 

20. 

This confirms the hypothesis that the backbone trained on real-world sceneries quickly becomes a limiting 

factor for GUI recognition if weights are not adjusted. Unfreezing of the backbone could be done even 

earlier in the training process. 

Figure 54. Plots of loss function for training dataset (top) and test dataset (bottom) for four 

runs. Marked in blue is a first test run. Yellow and golden are part one and two of the first 

full run with a bug.  Grey is a run with bug using only one common class for detection. Red 

shows the final run after fixing the bug, which performs visibly better than the other runs. 

All runs start with fast improvement that later slows down and eventually plateaus.  
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Mask Fix and Overfitting 

As already mentioned, one issue concerning the loading of masks was fixed after training runs was already 

conducted. These previous runs include one first test run with 39 epochs, a full run with 150 epochs (this 

run is split in two parts because the program stopped prematurely due to missing disk space) and a run with 

20 epochs that used one common class for detection and will be discussed later. 

As can be seen in Figure 54, this fix significantly improved the error as measured by the loss functions for 

training and test dataset. Furthermore, Figure 54 gives us intel about the ability of the trained DNN to 

generalize. For most of the epochs, training and test loss is roughly the same. This indicates good general-

ization. However, training and test loss slowly diverge for the second half of the epochs. Training loss 

increases a little bit while test loss gets worse again. At this point, the DNN is starting to slightly overfit on 

the training data. This suggests, that the DNN could benefit from a larger dataset. However, the benefit is 

probably going to be quite small. 

Common Class 

Also visible in Figure 54 is the run with one common class. The idea behind the ablation of the DNN was 

as follows. Some interactive elements look quite similar. This could cause the DNN to make a decision for 

the wrong class which in turn would influence its estimate of bounding-box and mask. If this was the case, 

a DNN having only one class would perform better. However, the losses are on par with those of other runs 

that were conducted with the mask bug present. This likely means that there is no advantage of using a 

common class and that the reasoning was wrong. 

Evaluation on Training Dataset of this Thesis 

Epoch 60 had the best test loss with a value of 0.36. Therefore, the parameters of that epoch were used for 

all further evaluations. 

The mAP@IoU=0.5 for the training dataset is 0.97. This is slightly below the value for most related work. 

However, it must be noted that they are not directly comparable for multiple reasons. The test dataset is not 

the same and our approach uses camera images instead of screenshots. Furthermore, the mAP score is only 

a baseline for what is achievable with this approach because of the quality issues caused by the camera. 
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Figure 55 shows three visual examples of detection performed on the test dataset. The DNN recognizes all 

elements and assigns the correct class. Most bounding-boxes and masks look very accurate. However, some 

of them slightly deviate from the shape of the element. This especially seems to be the case for elements 

where the ratio of width to height is far above one (I.e., elements that are very wide but not tall.). This could 

be addressed by adding additional anchor boxes whose shape is closer to that of objects with such an aspect 

ratio because currently the aspect ratios for anchor boxes are 1:2, 1:1, and 2:1. 

Evaluation on Real-World Android Applications 

Using GUIs from the self-written android application for evaluation provides information about how well 

the training itself worked. However, it does not give any hints about how well the dataset and with it the 

DNN generalizes for real-world applications. A DNN can only discover patterns that are present in the data 

it is being fed for training. If the patterns underlying the training data are not representative of real-world 

applications, detection result for those can still be much worse than for the test dataset. 

Because there is no suitable dataset available to evaluate the performance of the DNN for real-world appli-

cations, we picked sample GUIs from android applications that are popular in the Google Play Store or 

frequently used by ourselves. This selection may be biased as we only picked GUIs that do not reveal 

sensitive information. 

Figure 55. Visual examples of detection results for the test dataset. 
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Figure 56 shows some of the samples. We picked a range of good and bad detection samples to display. 

The sample on the left is being detected quite well. Almost all interactive elements are recognized even 

though the switches were detected as buttons. In the middle, some elements are detected but many are 

missing. On the right, recognition of the elements of the main content works well. Button and text field 

have been identified. But recognition also returned additional results for the main content which are no 

interactive elements. For the other areas, multiple elements were thrown together and detected as single 

button. Further samples are given in Appendix B. Again, some samples are recognized very well while 

others are recognized very poorly.  The DNN seems to do well for simple elements. However, it struggles 

as elements get more complex. All in all, recognition is definitely working worse than for the test dataset.  

Figure 56. Top row shows screenshots of GUIs. Bottom row shows the corresponding de-

tection results. 
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7. Summary 

This thesis investigated the approach of detecting interactive elements in GUIs of mobile applications using 

a DNN trained on an automatically generated and labeled dataset. The underlying idea behind this approach 

was that manual labeling is time-consuming and inaccurate. Automatic labeling could solve both issues at 

once. To evaluate this approach, it was implemented using three components: An android application that 

provides randomized GUIs and masks of the interactive elements present in them. Python scripts for cap-

turing of images of the application and collection of a dataset. Mask R-CNN trained on the resulting dataset. 

After collecting the training and test dataset and training the DNN, the performance was evaluated on the 

test dataset and real-world android applications. Numerical metrics and visual examples produced with the 

test dataset were good (mAP@IoU=0.5 of 0.97). However, the approach did not translate equally well to 

real-world applications. Often, simple elements were detected well and accurately but more complex ones 

were usually missed. Because of this, the approach is so far only of limited use for automatic testing frame-

works. 

7.1. Limitations 

The results are hard to compare to related papers because of the different ways of capturing the GUI. In 

fact, using a camera image of the screen is most likely more challenging. The approach used in this thesis 

works good for many interactive elements. Still, detection results are not quite good enough for reliable 

detection of many real-world GUIs. There are too many false positive and false negative results. 

For the desired use case of robotic testing, false positives may not pose a big problem. Clicking at something 

that is not actually clickable does not have any negative effects. Meanwhile, false negatives are a great 

problem because every element not detected reduces test coverage. It potentially not only means that this 

element is not tested but that elements in GUIs only accessible by interacting with this element are also left 

out as they are never shown. 

As stated above, more classical interactive elements like a simple button are detected well but many more 

complicated interactive elements like multiple lines of text or texts with images are not detected as the 

dataset does not contain data on these. This is a problem as many modern applications rely heavily on 

interactive elements that vary greatly in shape, size, look, and content. 

In part, this may be a problem that cannot really be solved well because even for humans it is often not 

directly clear if an element is interactive when only looking at GUIs. Sometimes, a human also needs trial 

and error to figure this out. 
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7.2. Outlook 

In this last section, we would like to present some thoughts and ideas for further research that came up 

during the writing and implementation of this thesis and that could solve some of the issues discussed above. 

First of all, there may be some optimization potential concerning the Mask R-CNN model used. Parameter 

tweaking could improve results. As noted before, some masks and bounding-boxes for elements with a 

great difference of width and height were not that accurate. This will potentially be solved by adding further 

aspect ratios for anchor boxes created to better account for such elements. Next, the DNN detected some 

false positives and some false negatives during evaluation. Because detecting false positives is less harmful 

and may actually resemble the way a human would approach this task (trial and error with many potential 

interactive elements to sort out false positives), the DNN’s confidence thresholds could be reduced. This 

way, detection would shift away from detecting many false negatives towards more false positive results. 

These could later be filtered out and coverage of true positives would probably increase along the way. 

Additionally, we came across a newer model version we did not know of before by Huang et al. (2019) 

named Mask Scoring R-CNN, which could replace Mask R-CNN and boost performance. 

As second measure, the dataset could be improved in various ways: Either by making it larger or by im-

proving quality of the interactive elements in the GUIs. It could be complemented by a manually labeled 

dataset or by implementing additional design frameworks apart from Material Design. The elements already 

implemented could also be used to create more complex elements. As touched on in the implementation, 

the text generation is biased and could be improved. To get data to closer resemble real-world GUIs, open-

source applications could be adapted for the use in automatic dataset collection and labeling because their 

source-code is accessible and enables adaptation. 

Next, a camera capturing images with less blur and more consistency could improve accuracy. As a side 

effect, images could be captures in faster succession making the approach a better solution for fast dataset 

collection and training. 

Additionally, we noticed the following: Automatically generated and labeled datasets provide more accu-

rate bounding-boxes and masks but manually labeled datasets are more representative when it comes to the 

detection of classes and whether or not there is an interactive element present. This happens due to the fact 

that the appearance of interactive elements in real-world applications varies greatly. This variety can hardly 

be reproduced in a self-written application. However, manually labeled dataset have access to all these 

applications as data. Furthermore, accuracy is not as important for classification and region proposals as 

for masks and bounding-boxes. These observations gave rise to the following idea: One could use both 

types of datasets for training but only for the parts where the datasets are best at. The manually labeled 

datasets would be used for training of classification and region proposal generation by freezing mask and 
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bounding-box branches. The automatically generated and labeled datasets would be used for the exact op-

posite. They would only train bounding-box and mask branch by freezing the convolutional backbone and 

region proposal network. This hybrid training could bring out the strengths of each type of data and improve 

overall performance. 

Finally, if this DNN is going to be used for detection in a pipeline with other DNNs (E.g., a robotic testing 

framework that uses reinforcement learning.), the convolutional backbone could be shared to reduce pa-

rameter count for faster training and inference. 
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8. Appendices 

Appendix A. Example of detection and segmentation results. (Hu et al. 2020) 
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Appendix B. Further samples of detection on real-world applications. 
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