

KIT – The Research University in the Helmholtz Association www.kit.edu

Detection and Segmentation of Interactive Elements in

Mobile Applications using Deep Learning Trained on

an Automatically Generated and Labeled Dataset

Bachelor’s Thesis

of

Benjamin Frank Meyjohann

Degree Course: Industrial Engineering and Management B.S.

Matriculation Number: 2228939

Institute of Applied Informatics and Formal Description

Methods (AIFB)

KIT Department of Economics and Management

Reviewer: Prof. Dr. Andreas Oberweis

Second Reviewer: Prof. Dr. J. Marius Zöllner

Supervisor: M. Sc. Demian Frister

Submitted: 9. December 2022

http://www.kit.edu/

Abstract

Testing of graphical user interfaces of mobile applications is important to ensure their functionality and

usability. However, manual testing is time-consuming and expensive. This could be solved by automating

the testing process. Previous frameworks for automation rely on random actions or pattern recognition.

Both types are not efficient, because the former is missing a structured approach at testing and the latter

must often be revised if the graphical user interface is modified. In this thesis, we utilize deep learning to

make recognition robust to changes in the graphical user interface. For training, we use an automatically

generated and labeled dataset. This allows for fast and accurate labeling resulting in improved data quality

compared to manual labeling. Additionally, recognition is performed on images of the mobile application

captured by camera and not on screenshots. That way, testing can be performed end-to-end. The results are

hard to compare to previous works because of the different ways of capturing the mobile application. While

the results look promising and our approach recognizes many elements of graphical user interfaces, the

benefit for automated testing is limited because many complex elements are not yet recognized well enough.

I TABLE OF CONTENTS

Table of Contents

Table of Contents .. I

List of Abbreviations ... III

List of Figures ... V

List of Tables ... X

1. Introduction ... 1

1.1. Motivation ... 1

1.2. Objective.. 2

1.3. Structure .. 3

2. Theoretical Foundations ... 4

2.1. Mobile Applications .. 4

2.2. Material Design ... 5

2.3. Software Testing .. 6

2.4. Computer Vision ... 8

2.4.1. Image Recognition .. 8

2.4.2. Selective Search .. 10

2.5. Machine Learning .. 10

2.5.1. Support Vector Machine ... 14

2.6. Deep Learning ... 16

2.6.1. Multilayer Perceptrons ... 16

2.6.2. Optimization ... 19

2.6.3. Convolutional Neural Networks ... 25

2.6.4. Metrics .. 29

2.7. Deep Neural Networks for Object Detection and Instance Segmentation 31

2.7.1. R-CNN Family ... 32

2.7.2. Mask R-CNN .. 37

2.7.3. YOLO Family ... 39

3. Related Work ... 45

3.1. “Construction of GUI Elements Recognition Model for AI Testing based on Deep Learning” 45

3.2. “Detection and Segmentation of Graphical Elements on GUIs for Mobile Apps Based on Deep

Learning” .. 46

3.3. “Object detection for graphical user interface: old fashioned or deep learning or a combination?” 46

4. Methodology ... 48

5. Implementation .. 51

5.1. Android Application .. 52

TABLE OF CONTENTS II

5.2. Dataset Collection Scripts using Python ... 60

5.3. Mask R-CNN ... 62

5.4. Workflow for Dataset Collection and Training ... 66

5.5. Problems .. 69

6. Evaluation .. 72

7. Summary .. 76

7.1. Limitations ... 76

7.2. Outlook .. 77

8. Appendices ... 79

References .. 81

Assertion ... 87

III LIST OF ABBREVIATIONS

List of Abbreviations

AIFB Institute of Applied Informatics and Formal De-

scription Methods

AP Average Precision

CNN Convolutional Neural Network

COCO Common Objects in Context

CPU Central Processing Unit

CV Computer Vision

DNN Deep Neural Network

FN False Negative

FP False Positive

FPN Feature Pyramid Network

FPS Frames per Second

GPU Graphical Processing Unit

GUI Graphical User Interface

IDE Integrated Development Environment

IE Interactive Element

IoU Intersect over Union

KIT Karlsruhe Institute of Technology

mAP Mean Average Precision

ML Machine Learning

MLP Multilayer Perceptron

NN Neural Network

OS Operating System

LIST OF ABBREVIATIONS IV

PCA Principal Component Analysis

R-CNN Regions with Convolutional Neural Network Fea-

tures

RoI Region of Interest

RPN Region Proposal Network

SGD Stochastic Gradient Descent

SVM Support Vector Machine

TN True Negative

TP True Positive

UI User Interface

YOLO You Only Look Once

V LIST OF FIGURES

List of Figures

Figure 1. Structure of thesis visualized as mind map. Starting in the upper left, chapters and sections are

arranged clockwise. ... 3

Figure 2. Examples for components provided by Material Design. From left to right, top to bottom: Top

app bar, button, floating action button, text fields, bottom navigation, checkboxes, switches, radio

buttons and sliders. .. 5

Figure 3. Different computer vision tasks applied to an image: Classification assigns a class to the entire

image (upper left). Object detection outputs bounding-boxes for every object in the image as well

as a corresponding class (lower left). Semantic segmentation assigns every pixel belonging to a

certain class to a mask for that class (upper right. Instance segmentation outputs a binary mask

and class for every object found in the image (lower right). ... 9

Figure 4. Segmentation masks at various stages in the hierarchical grouping process starting with many

small regions and ending in few big regions. Underneath, the corresponding images with

bounding-box proposals at each stage. Bounding-boxes of actual objects are highlighted. (Uijlings

et al. 2013) ... 10

Figure 5. Three graphs with a line fitted to training data. Green points are part of the training dataset and

blue points part of the test dataset. In the left graph, the line is overfitting. It describes the green

points very well but not the blue ones. In the graph in the middle, the line is overfitting. It describes

neither green nor blue points appropriately. In the right graph, the line describes both green and

blue points decently indicating good generalization.. 12

Figure 6. Supervised learning takes training inputs and training labels as input. It outputs a mode with

learned parameters, that can be used to predict outputs for new, to the model unknown inputs. 13

Figure 7. Example of regression: Fitting line to dataset (left), and example of classification: Line dividing

dataset into two distinct classes (right). ... 13

Figure 8. Interaction of agent and environment through observation, action, and reward. Based on Zhang et

al. (2021, p. 31). ... 14

Figure 9. SVG with hard margin separating linearly separable data into two distinct classes (left) and SVM

with soft margin for data that is not linearly separable (right). ... 15

Figure 10. Multiclass SVM approaches: One-versus-all separating each one class from all other classes (left)

and one-versus-one separating pairs of classes one by one (right). ... 15

Figure 11. Internals of an artificial neuron: Input is weighted and summed up with a bias. After applying

an activation function, the output is obtained. ... 17

Figure 12. Widely used activation functions: Rectified linear unit (ReLU) is a linear function for positive

values and equal to zero for negative values. Leaky rectified linear unit (Leaky ReLU) is the same

for positive values but uses a fraction of the value for negative values. Hyperbolic tangent (tanh)

https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444126
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444126
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444127
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444127
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444127
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444128
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444128
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444128
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444128
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444128
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444129
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444129
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444129
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444129
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444130
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444130
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444130
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444130
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444130
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444131
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444131
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444132
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444132
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444133
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444133
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444134
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444134
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444135
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444135
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444136
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444136
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444137
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444137
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444137

LIST OF FIGURES VI

maps values to a range of negative and positive one. The sigmoid function is similar but maps to

values between zero and one. .. 18

Figure 13. Basic example of an MLP with two hidden layers as graph with neurons as vertices/nodes and

connections as edges. Every input in the input layer is connected to every neuron of the first hidden

layer, each of which is in turn connected to every neuron of the second hidden layer. All those

neurons are interconnected with each neuron of the output layer resulting in the final output of the

MLP. .. 19

Figure 14. An example of an MLP trained on images of digits. First, forward propagation is performed.

Then, actual outputs are compared with desired outputs and parameters (weights) are adjusted to

get closer to the desired result. .. 20

Figure 15. Graph showing gradient descent (red line) for a function with two inputs using an entire batch.

Black lines indicate points where output level of the function is the same. Therefore, the shown

example ca be thought of like an elongated valley. Because of this, gradients (black arrows) do

not point to the center of the valley. This results in alternating gradients after every step of gradient

descent making optimization take much longer compared to the shortest path downhill. 22

Figure 16. Three two dimensional plots with datapoints of two classes (marked in yellow and blue), where

blue points are in the center and encircled by a ring of yellow points. The background is colored

according to what class a created MLP would assign to a point at that position. Shades in between

yellow and blue indicate uncertainty. In the left plot, background has no clear colors. In the middle,

a blue polygon is surrounded by yellow background. In the right plot, a blue oval is encircled by

yellow background. ... 24

Figure 17. Shown above is an example of two positions of the sliding window multiplied with the kernel

resulting in a single output value per position. .. 26

Figure 18. Each cell represents the learned weights of a kernel for an image with three color channels. The

various kernels picked up specific features of the input like edges, textures, or color combinations.

 ... 26

Figure 19. Max pooling with a window size of 2 x 2 applied to a sample input. The maximum of all values

in the window is computed. Then, the sliding window is moved to the next position and the process

is repeated. ... 27

Figure 20. Example of simple CNN architecture with one convolutional layer, one pooling layer and two

fully connected layers. (O'Shea and Nash 2015, p. 4) .. 28

Figure 21. Example of matrix of possible combinations with TP, FP, TN and FN. (Szeliski 2022, p. 442)

 ... 29

Figure 22. Schematic example of IoU (a) and example using a real image (b). (Szeliski 2022, p. 380) ... 30

Figure 23. Precision-recall-curve for a single class and IoU threshold. For different confidence scores,

precision and recall are calculated and points are plotted and connected. (Szeliski 2022, p. 381)

 ... 31

https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444137
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444137
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444138
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444138
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444138
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444138
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444138
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444139
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444139
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444139
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444140
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444140
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444140
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444140
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444140
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444141
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444141
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444141
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444141
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444141
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444141
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444142
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444142
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444143
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444143
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444143
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444144
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444144
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444144
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444145
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444145
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444146
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444146
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444147
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444148
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444148
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444148

VII LIST OF FIGURES

Figure 24. Original R-CNN architecture without bounding-box regression: First stage: Region proposal

extraction, second stage: Convolutional feature computation and third stage: Classification of

region proposals (left). ... 32

Figure 25. Original version (left) and modified version (right) of figure from Bharati and Pramanik (2020,

p. 660) in comparison. They both visualized the architecture of R-CNN with a focus on feature

extraction, classification via SVMs and bounding-box regression for each region proposal. The

original shows arrows from feature extraction to classification and bounding-box regression while

the modified version has an additional arrow pointing from classification to bounding-box

regression. .. 33

Figure 26. Fast R-CNN architecture: 1. CNN and RoI projection on convolutional feature map. 2. For each

RoI: RoI pooling layer, fully connected layers, split into branches for classification using fully

connected layer and softmax activation, and bounding-box regression. 34

Figure 27. Simplified illustration of working principle of RoI pooling layer: Division of input region with

size of 4 × 8 into 2 × 2 sub-regions with size of 2 × 4 and selection of the highest value as output

value. ... 35

Figure 28. RPN utilizing convolutional feature map for region proposals. Thus, flow of information from

the feature map onwards is split going into the RPN and the RoI pooling layer. Proposals generated

by the RPN are also fed into the RoI pooling layer. .. 36

Figure 29. Window sliding over convolutional feature map producing offsets (left, right, top and bottom)

and class scores (object or no object) based on anchor boxes as base areas. (Ren et al. 2017) ... 37

Figure 30. Mask R-CNN architecture divided in Faster R-CNN with RoI pooling layer replaced by

RoIAlign layer, and additional mask branch. .. 38

Figure 31. Detection pipeline of YOLOv1: 1. Division of input into grid, 2. For each cell: Simultaneous

class prediction and bounding-box prediction, 3. Merging of both predictions into final detection

results. .. 40

Figure 32. Cutout of hierarchical tree structure assigning low-level classes to higher-level classes. (Redmon

and Farhadi 2017, p. 6524) .. 42

Figure 33. Comparison of version five, six and seven of YOLO and additional model architectures. The

graph on the left plots AP for the COCO dataset as y-axis and latency as x-axis. The graph on the

right uses the same y-axis but FPS as x-axis. In summary, YOLOv7 outperforms other model

architectures for some cases. Except for YOLOv6 which constantly outperforms all other model

architectures including YOLOv7. .. 44

Figure 34. Example of results using YOLOv3 (left) and Mask R-CNN (right). (C. Zhang et al. 2021) ... 45

Figure 35. Four examples of non-text GUI detection using the new approach suggested by the authors of

the paper. Edges of bounding-boxes accurately match edges of elements. Some elements are

merged together while others are split into multiple bounding-boxes. .. 47

https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444149
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444149
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444149
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444150
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444150
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444150
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444150
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444150
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444150
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444151
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444151
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444151
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444152
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444152
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444152
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444153
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444153
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444153
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444154
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444154
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444155
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444155
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444156
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444156
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444156
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444157
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444157
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444158
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444158
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444158
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444158
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444158
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444159
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444160
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444160
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444160

LIST OF FIGURES

 VIII

Figure 36. Individual components and their interaction with each other. A mobile application provides

random GUIs and information about the interactive elements for labeling. The GUIs are captured

by a script that also collects the information about elements. From this, the script creates a dataset.

This can be used for training and evaluation of a neural network. .. 48

Figure 37. Outline of communications between components in order of execution. The dataset collection

script serves as client accessing the mobile application acting as server. The script orchestrates

collection of each datapoint and saves all information in a directory. For a single datapoint, it starts

by requesting a random GUI. Then, it asks for information about classes of elements. For every

element in the GUI, it requests, captures, and saved the mask. Afterwards, the DNN uses this

directory as dataset for training. .. 52

Figure 38. Most relevant classes and files of the android application for randomized GUIs: MainActivity,

State, Registry, Utils, Connection, Random Elements, and Probabilities. 53

Figure 39. Contents of file MainActivity: Class MainActivity and composable function RandomApp. ... 53

Figure 40. Content of class State. Shows variables(top) and methods(bottom). .. 55

Figure 41. Variables and methods of class Registry... 56

Figure 42. All composable functions of file RandomElements. ... 56

Figure 43. Variables and methods of class Connection. ... 57

Figure 44. Possible requests and their responses with header and body. ... 58

Figure 45. Functions and methods of file Utils. ... 59

Figure 46. Three examples of GUIs generated using the application described above. 60

Figure 47. Variables and methods of class Dataset. ... 62

Figure 48. Methods of class IEDataset. .. 65

Figure 49. First window shows image of mobile device with green screen and sliders for thresholds. Second

window shows the resulting binary mask after selecting the screen color by clicking it and

adjusting the sliders. .. 66

Figure 50. Window before and after cropping. Most pixels that are not part of the screen were removed.67

Figure 51. Window with threshold chosen based on the mask displayed (left). The other images show the

processing applied to the raw image to obtain a binary mask. From left to right, the following

steps are performed: Painting everything black except for the screen. Applying threshold to

generate a binary output which is then inverted and shown in the image on the right. 68

Figure 52. Each row represents one datapoint. The first image in a row shows the GUI captured by camera,

which is the input image for training. The following images in each row display masks of all

objects of the four classes appearing most often in the GUI. Each mask instance is colored in a

different shade. .. 68

Figure 53. The two images show GUIs captured overlayed with all their corresponding masks. In the first

image, all masks appear to be scaled down, which makes them smaller and move towards the

center of the image. In the second image, the opposite seems to be the case. Because each

https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444161
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444161
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444161
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444161
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444162
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444162
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444162
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444162
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444162
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444162
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444163
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444163
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444164
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444165
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444166
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444167
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444168
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444169
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444170
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444171
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444172
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444173
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444174
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444174
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444174
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444175
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444176
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444176
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444176
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444176
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444177
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444177
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444177
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444177
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444178
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444178
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444178

IX LIST OF FIGURES

individual mask is taken one after another, this implies that focus changed only once after taking

the GUI image and before taking all mask images. ... 70

Figure 54. Plots of loss function for training dataset (top) and test dataset (bottom) for four runs. Marked

in blue is a first test run. Yellow and golden are part one and two of the first full run with a bug.

Grey is a run with bug using only one common class for detection. Red shows the final run after

fixing the bug, which performs visibly better than the other runs. All runs start with fast

improvement that later slows down and eventually plateaus. ... 72

Figure 55. Visual examples of detection results for the test dataset. .. 74

Figure 56. Top row shows screenshots of GUIs. Bottom row shows the corresponding detection results. 75

https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444178
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444178
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444179
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444179
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444179
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444179
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444179
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444180
https://d.docs.live.net/c557d506cf19ba44/Dokumente/Studium-Benjamins-Surface-Pro-6/Thesis/AA-82179-11121_Benjamin_Meyjohann.docx#_Toc121444181

LIST OF TABLES X

List of Tables

Table 1. Testing types and corresponding information about code opacity, person conducting the test, and

scope of test. Based on Nidhra (2012, pp. 30–31). .. 7

Table 2. Common Convolutional Neural Network Architectures. Based on (Bharati and Pramanik 2020, pp.

659–660). ... 28

Table 3. Differences between implementation by Abdulla and official paper by He et al. according to

Abdulla (2017) 63

1 INTRODUCTION

1. Introduction

For both physical products as well as software, testing is an important part of the development process since

it has the potential to ensure and improve usability, functionality, and possibly even safety of a product. All

of which can lead to more customers and thus additional revenue.

However, software development differs from the development of physical goods. While the latter results in

one final product, development of software usually happens iteratively, and software updates are published

repeatedly. Hence, all testing of software is generally not only done once but must be repeated continuously

while adapting to the changes that have been made. This makes manual testing a task that is time-consuming

and inefficient.

Since smartphones are very popular nowadays (Statista 2022a), there exist many mobile applications and a

lot of people use them for hours on a daily basis (Statista 2022b). Therefore, testing of mobile applications

can improve satisfaction for many customers (Kong et al. 2021). Interaction between the human and a

mobile application mainly relies on graphical user interfaces (GUIs). Because of this, testing of GUIs is an

important part of the testing process.

Apart from this, the area of artificial intelligence (AI) has seen huge improvements over the last years.

Nowadays, AI is capable of performing various visual tasks (Szeliski 2022, p. 237). This raises the question

if testing of GUIs could benefit from the employment of artificial intelligence.

1.1. Motivation

Because of the shortfalls of manual testing, automated testing has the potential of decreasing the human

effort and costs associated with testing (Nass et al. 2021) while increasing test coverage and reusability

(Rafi et al. 2012). Some existing frameworks for automated testing of GUIs rely on random emulated ac-

tions, which is inefficient because many actions do not have any effect and because they are missing a

structured approach at testing the application. Other frameworks use pattern recognition (Yeh et al. 2009)

or access to the application’s source code to identify GUI elements. However, according to Coppola et al.

(2016), both ways of testing GUI elements in mobile applications are fragile. Changes in the GUI or dif-

ferent devices require most automated tests to be revised defeating the purpose of automation.

Recognition of GUIs independently of changes in the application could thus prove to be a crucial building

block in achieving efficient automated testing. With the discovery of robust deep learning models for com-

puter vision (CV), it becomes possible to reliably detect GUIs of mobile applications based solely on what

is displayed on the screen. This makes adaptation to changes easier.

Previous work on this topic uses screenshots and mainly relies on object detection to achieve good accuracy

when evaluated on its own dataset. Nonetheless, human error is introduced because of manual labeling of

INTRODUCTION 2

datasets used for training. The fact that manual labeling is a time-consuming and repetitive task may am-

plify inaccuracies of bounding-boxes in the dataset. Since neural networks can only learn from information

provided by the dataset, this inaccuracy is carried on to detection after training. As additional result, it is

questionable in how far metrics derived from a manually labeled dataset are trustworthy for evaluation

because data used for validation suffers from the same problem. Furthermore, object detection creates rec-

tangular bounding-boxes as output. It cannot accurately describe the shape of interactive elements that do

not consist of a rectangle or are captured at an angle.

When using screenshots for detection and emulated events for user actions, a part of the chain between

human and mobile application is left out during testing. Everything happening between screen and human

cannot be accurately reproduced. E.g., a human might be affected by Parkinson’s disease resulting in im-

precise actions or impaired vision causing difficulties in recognition of elements and texts below a certain

size. Also, environmental conditions can impact usability (e.g., a wet screen). All of this could be included

into testing by conducting tests end-to-end via a camera performing detection and a robot performing ac-

tions on a real device by using its touchscreen. To automate this, reinforcement learning could be used.

This thesis investigates the task of detection.

1.2. Objective

The goal of this thesis is to determine whether a neural network (NN) trained on an automatically generated

and labeled dataset offers advantages compared to previous approaches of detecting interactive elements in

mobile applications.

Discussed issues with accuracy are addressed by utilizing instance segmentation, which creates masks in-

stead of rectangular bounding-boxes. To obtain accurate labeling of data, information about position, size

and type of interactive elements are taken directly from a mobile application. Since this information is

usually not accessible in existing applications (source code is not available), a mobile application providing

random GUIs with interactive elements and labeling data is programmed. This provides reliable labeling

and fast generation of data once setup is finished. To include external influences, detection is performed on

images captured by a camera and not on screenshots.

Ideally, the network provides a confidence score for each interactive element and distinguishes between

different interactive elements. The possible ways of interaction can then be deducted based on the element

type. E.g., tipping or swiping.

The neural network is mainly supposed to offer high accuracy while still preserving a sufficient speed for

testing of mobile applications.

3 INTRODUCTION

The neural network is evaluated on a part of the automatically generated and labeled dataset in addition to

GUIs of real-world mobile applications. Its accuracy is compared to that of previous work with similar

objectives.

1.3. Structure

So far, the topic of this thesis has been introduced and motivation and objective have been discussed in

chapter 1. From here on, the thesis is structured as follows. Chapter 2 explains all theoretical concepts that

are relevant to the work of this thesis. It includes mobile applications, Material Design, and software testing

as well as computer vision, machine learning, deep learning and deep neural networks for object detection

and instance segmentation. Chapter 3 covers previous work related to the objective of this thesis. Chapter

4 outlines the theoretical approach behind the practical implementation. The implementation itself is pre-

sented in chapter 5. It includes the android application for randomized GUIs, scripts for dataset collection,

Mask-RCNN as DNN for detection, workflow of dataset collection, and problems that arose during imple-

mentation. Chapter 6 evaluates the results. Chapter 7 provides a summary of the entire thesis. Furthermore,

it discusses limitations of the approach used, and gives suggestions and ideas for further research in the

future. The structure is laid out graphically in Figure 1.

Figure 1. Structure of thesis visualized as mind map. Starting in the upper left, chapters

and sections are arranged clockwise.

THEORETICAL FOUNDATIONS 4

2. Theoretical Foundations

This chapter provides an overview over subjects relevant for a thorough understanding of this thesis. It

covers the following subjects: Mobile applications, Material Design and software testing as well as com-

puter vision, machine learning and deep learning.

2.1. Mobile Applications

Applications are called mobile applications if they are developed specifically for mobile devices. Mobile

devices themselves can be classified by their portability, their ability to access the internet via a wireless

data connection, their local data storage and their power source that enables usage of the device without a

power cable connected. Among others, smartphones and tablets are mobile devices. (Firtman 2010, p. 4;

Myers et al. 2012, p. 214; Ross et al. 2020, p. 15)

There are multiple operating systems/platforms for mobile devices. Nonetheless, Android and iOS are al-

most exclusively used with a respective market share of 70.98% and 28.41% (StatCounter Global Stats

2022).

Mobile applications can be divided into three categories: Native applications, mobile web applications and

multi-platform applications. Each of which has its advantages and disadvantages. (Delia et al. 2015; Masi

et al. 2013, p. 65)

Native applications use the programming language and tools of a specific platform. This enables applica-

tions to use all features of a mobile device (E.g., camera, Global Positioning System (GPS), etc.). Addi-

tionally, this offers the best performance. However, support for multiple platforms can only be provided by

developing independent applications for each platform. Therefore, the downside of this approach comes

down to the programming effort required and costs occurring. (Delia et al. 2015; Masi et al. 2013, p. 65;

Zohud and Zein 2021, p. 46)

Mobile web applications run inside a web browser and are programmed using Hypertext Markup Language

(HTML), Cascading Style Sheets (CSS) and JavaScript. On the one hand, this makes them highly platform

independent. They can be used on all platforms without any platform specific programming overhead. On

the other hand, this approach reduces performance. (Delia et al. 2015; Zohud and Zein 2021, p. 47)

Multi-platform applications can be developed using different approaches. All of them have the following

goal in common. Reducing or eliminating some of the downsides of mobile web applications and native

applications at the same time. I.e., enable hardware access or increase performance in comparison to mobile

web applications and still unify application development for all platforms, which is not the case for native

applications. One such approach are hybrid applications, where a web application is wrapped in a platform

native container. This can potentially give access to more device features than mobile web applications.

5 THEORETICAL FOUNDATIONS

Yet, it still reduces performance. Another approach are cross-compiled applications. Here, applications are

developed in one environment and compiled into native code for multiple platforms. Lately, the usage of

multi-platform approaches in the industry is growing. (Zohud and Zein 2021, p. 47)

2.2. Material Design

Material Design is developed by Google and mainly used for mobile applications. It is a design system for

GUIs “[…] inspired by the physical world and its textures […]” (Introduction - Material Design n.d.).

Currently, Material Design is available for Android, Flutter, and web. It provides components (examples

in Figure 2) and guidelines to build GUIs. GUIs are sometimes only referred to as user interfaces (UIs).

The latest version released is Material Design 3. (Introduction - Material Design n.d.)

Components provided with Material Design 3 are grouped into six categories: Action, communication, con-

tainment, navigation, selection, and text inputs. Action includes various button types with text and/or icons.

A special button type are floating action buttons (FABs). There is only one visible at a time and it is typi-

cally responsible for the most important action that can be triggered. The category communication offers

badges, progress indicators and snackbars to display useful information to the user. Containment provides

wrappers for other components. These wrappers can be cards, bottom sheets, dialogs, dividers, or lists.

Navigation lets the user navigate between different views. There are tabs, navigation bars/rails/drawers,

and app bars. Selection gives the user the opportunity to choose between a predefined range of values using

date pickers, menus, switches, sliders, radio buttons, time pickers, and chips. Text input lets users enter

textual information. (Components – Material Design 3 n.d.)

Figure 2. Examples for components provided by Material Design. From left to right, top to

bottom: Top app bar, button, floating action button, text fields, bottom navigation, check-

boxes, switches, radio buttons and sliders.

(Introduction n.d.)

THEORETICAL FOUNDATIONS 6

2.3. Software Testing

Software testing is utilized to validate the quality of software. It is the process of assessing whether the

software can accomplish the tasks it was designed to do and does not produce unintended results along the

way. Single assessments are named tests. If the assessment result is positive, the test is said to have passed.

Otherwise, it is said to have failed. For this, software parts are usually executed systematically in a con-

trolled environment. It is a time-consuming task, that makes up a large part of the software development

costs. Automated testing can reduce the share of costs, the resources consumed and at the same time further

strengthen the reliability of software. (Jamil et al. 2016, p. 179; Luo 2001, p. 1; Myers et al. 2012, p. 2;

Shao et al. 2007, p. 137)

Black Box and White Box Testing

Software testing types can be split into two complementary groups: White-box testing and black-box testing.

White-box testing refers to structural testing techniques that are designed with knowledge of the source

code in mind. They are generally used for verification and answer the following question: “[…] are we

building the software right?” (Nidhra 2012, p. 29) In the context of GUI testing, white-box testing would

use the source code to find an element and interact with it. Black-box testing spans functional testing tech-

niques. Their design is based solely on the specifications of the software and should not be influenced by

the source code. They are generally used for validation and resolve the following question: “[…] are we

building the right software?” (Nidhra 2012, p. 29) Here, GUI testing would detect elements based on what

is shown on the screen and interact with them, or use random actions. (Liu and Kuan Tan 2009, p. 546;

Nidhra 2012, p. 29; O'Regan 2019, pp. 120–127)

Software Testing Types

Unit Testing: The software testing type with the smallest scope is unit testing, which is performed in a

white-box fashion. It is usually done by the developer and tests individual units of code. These can be single

classes, methods, or functions. (Jorgensen 2018, pp. 229–329; Luo 2001, p. 2)

Integration Testing: This is again a white-box testing technique employed by the developer. It verifies

that multiple units work correct in conjunction. For this, it requires properly defined and implemented in-

terfaces. (Jorgensen 2018, pp. 229–329; Luo 2001, p. 2)

System and Acceptance Testing: System testing and acceptance testing are black-box testing approaches.

The former assures the quality of the entire system end-to-end and is usually done by independent testers.

The latter assesses whether the user/customer is satisfied with the software. A testing framework for mobile

applications using a camera for detection and a robot for interaction would fall into the category of system

testing. (Jorgensen 2018, pp. 229–329; Luo 2001, p. 2)

7 THEORETICAL FOUNDATIONS

An overview over testing types is given in Table 1.

Table 1. Testing types and corresponding information about code opacity, person conducting the test, and

scope of test. Based on Nidhra (2012, pp. 30–31).

Testing type Opacity Who will do this testing? General scope

Unit White-box testing Generally, programmers

who write code they test

For small units of code

generally no larger than a

class

Integration White-box testing Generally, programmers

who write code they test

For multiple classes

System Black-box testing Independent testers will

test

For entire product in rep-

resentative environment

Acceptance Black-box testing Customer Side For entire product in cus-

tomer’s environment

Code Coverage

Since source code is known for white-box testing, one can determine the percentage of code that is covered

by tests. More code covered makes errors less likely. The so-called code coverage can be measured in

different ways. Statement coverage measures what percentage of all statements in the source code is exe-

cuted at least once. For decision coverage, which is also known as branch coverage, the number of executed

decision outcomes is divided by the total number of decision outcomes to calculate the percentage. A deci-

sion outcome is one possible route taken by the program after the control flow is split up due to some

decision that has to be made (i.e., if statements, while loops etc.). (IEEE/ISO/IEC International Standard -

Software and systems engineering‐Software testing‐Part 4: Test techniques, pp. 30–34; O'Regan 2019, pp.

125–126)

Mobile Testing and GUI Testing

Mobile applications are typically required to run on a multitude of devices and varying environmental con-

strains. Device screens have different resolutions, aspect ratios as well as physical sizes and can often be

used in either landscape or portrait mode. There are different types of input (i.e., touch, stylus, mouse,

buttons etc.) and the computing power is often inferior to non-mobile devices. Network connectivity can

vary greatly or be totally absent. Because of this, extensive testing taking the given constraints into account

THEORETICAL FOUNDATIONS 8

is crucial but often quite costly. Mobile testing can be performed on emulators but manual testing with a

real device often still takes a necessary part in the process. (Myers et al. 2012, pp. 213–225)

Since mobile applications rely heavily on interaction with the user via GUIs, testing of GUIs is an important

part of the testing process. Especially because the complexity of GUIs opens room for errors. Albeit being

very important, GUI testing is difficult for various reasons. GUIs often respond to events triggered by the

user. Even a single event like a touch interaction is not easy to simulate. At the same time, there is a great

number of possible events that can occur and must be tested. Additionally, testing criteria like code cover-

age are not conclusive for the quality of GUI tests. There are two widely used methods for GUI testing. The

first one replays a previously captured user interaction. Because of this, the test can only be created once

the GUI has been programmed and must be revised whenever changes in the GUI are made. The second

method programmatically simulates interaction. This approach again has its drawbacks because identifying

GUI elements and verifying the results is not trivial. (Ruiz and Price 2007, pp. 51–52)

2.4. Computer Vision

The following statements on computer vision are based on Szeliski (2022, pp. 3–9).

For us human-beings, vision is an integral part for our perception of the environment because we can extract

a lot of information from it. We are easily able to identify and classify objects, understand their shape, tell

their distance from our eyes, and much more. Computer vision is the attempt to transfer this ability to

computers. While great progress has been made, computer vision is still vastly inferior to human vision.

This section covers topics of computer vision relevant for the understanding of following chapters in this

thesis.

2.4.1. Image Recognition

This section is based on Szeliski (2022, pp. 344–396).

Different types of recognition can be conducted on an image. This section will cover those relevant for this

thesis. Further recognition tasks not discussed include face detection, pose estimation and panoptic seg-

mentation. Previously, classical algorithms that do not learn from data were used to tackle recognition tasks.

Nowadays, deep learning is becoming more popular since it is well suited to solve such tasks.

Large-scale datasets played an important role in this shift. They are helpful for both training and testing.

The first large dataset driving advancements in the field was the PASCAL Visual Object Classes (VOC)

challenge (Everingham et al. 2010). However, it provided only 20 labeled classes. This weakness was elim-

inated in the ImageNet dataset (Deng et al. 2009), which included 1000 classes and over a million images.

This enabled end-to-end learning systems to succeed. The Microsoft Common Objects in Context (COCO)

9 THEORETICAL FOUNDATIONS

dataset (Lin et al. 2014) allowed further improvements mainly in the area of accurate, per pixel detection

of objects.

Figure 24 applies each of the tasks discussed below to the same image to illustrate the difference.

The most basic recognition task is classification. Here, a specific class is assigned to an entire image.

Next, there is object detection. In addition to classification, it localizes objects. The result consists of bound-

ing-boxes, each of which is a rectangular cut-out of the image containing only one object, and the corre-

sponding class. An example would be the detection of faces or pedestrians. Since objects are not necessarily

rectangular, the bounding-box usually covers additional pixels that do not belong to the detected object.

Furthermore, there are tasks resulting in pixel-wise, binary masks for the image. This group of tasks is

called segmentation:

Figure 3. Different computer vision tasks applied to an image: Classification assigns a

class to the entire image (upper left). Object detection outputs bounding-boxes for every

object in the image as well as a corresponding class (lower left). Semantic segmentation

assigns every pixel belonging to a certain class to a mask for that class (upper right. In-

stance segmentation outputs a binary mask and class for every object found in the image

(lower right).

(Abdulla 2018)

THEORETICAL FOUNDATIONS 10

Semantic segmentation produces a common mask for all instances of a class contained in the image. Thus,

all pixels of all objects belonging to an individual class are assigned to one mask for that class.

Instance segmentation takes this one step further and produces a mask for each individual object. Hence, if

there are multiple objects belonging to the same class, each of them is assigned to the same class but is

associated with its own mask covering all pixels of that particular object only.

2.4.2. Selective Search

Selective search is an algorithm in the domain of computer vision designed to propose regions in an image,

that are likely to contain an object. It utilizes segmentation to do so. This algorithm is relevant for later

parts of this thesis. This section on selective search is based on Uijlings et al. (2013).

At first, selective search divides the image into an initial set of small segmentation regions. Each of the

regions should cover at most one actual object in the image. For this, selective search uses a fast version of

the algorithm proposed by Felzenszwalb and Huttenlocher (2004).

From this initial set, selective search takes the two most similar regions and merges them. This is repeated

until there is a single region left spanning the entire image. Similarity is evaluated by a composition of

different criteria: Color, Textures, Size (preferring smaller regions), and Position (preferring regions having

a large common border or regions, where one encloses the other). This results in a hierarchical bottom-up

grouping process as can be seen in Figure 4. All the regions produced during this process are regarded as

proposals for possible objects in the image.

2.5. Machine Learning

The following statements on machine learning (ML) are mostly based on Zhang et al. (pp. 15–32).

Figure 4. Segmentation masks at various stages in the hierarchical grouping process start-

ing with many small regions and ending in few big regions. Underneath, the corresponding

images with bounding-box proposals at each stage. Bounding-boxes of actual objects are

highlighted. (Uijlings et al. 2013)

11 THEORETICAL FOUNDATIONS

Usually, algorithms solving specific problems are explicitly programmed by human beings. For this, hu-

mans require an understanding of the connection between a given information (input) and the desired an-

swer (output). Only then can they convert this knowledge into a computer program. While this approach

yields satisfying performance for many tasks, other tasks are hard to solve or cannot be solved at all using

this approach. This is because human-beings are not always able to formulate a well-suited algorithm for

various reasons.

Some of these tasks like object detection, humans can perform subconsciously with ease. However, at the

same time they are not able to consciously understand the connection and formulate a well-working algo-

rithm to solve this task. At other tasks, machine learning approaches exceed the performance of most hu-

man-beings. One example is the improved detection of skin cancer based on images (Haenssle et al. 2018).

Another example is the more reliable discovery of possibly dangerous polyps, which can develop into can-

cer, during colonoscopy (Alessandro Repici et al. 2020). In addition, some problems do not have a static

answer. The answer can change over time. This requires an algorithm to adapt during execution. (Zhang et

al., pp. 15–16)

Machine learning offers an alternative approach to manually programmed algorithms by learning from ex-

perience as stated in the definition given in the following well-known quote:

“A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P, if its performance at tasks in T, as measured by

P, improves with experience E.” (Mitchell 1997)

In machine learning, a model digests input and transforms it in some way to generate output. The transfor-

mations applied depend on parameters, which are tweaked by a learning algorithm. Based on experience,

the learning algorithm uses an objective function to adjust these parameters in a meaningful way that im-

proves the performance of the model at the given task.

This experience is provided by sample data. A collection of data is called dataset. Individual entries are

named data points. A data point always consists of features, which are inputs for the task/problem to be

solved. Depending on the type of learning, a data point can also include the corresponding desired output,

a so-called label. E.g., a data point could be an image where the individual pixel values are input features

and a classification like “Cat” or “Dog” is the output label.

Usually, there are two distinct datasets, a training dataset, and a test dataset. The former is used during

learning while the latter is used to judge the performance afterwards. This is needed because good perfor-

mance on the training dataset does not necessarily translate to good performance on unseen data.

THEORETICAL FOUNDATIONS 12

Connected to this is the concept of generalization. If the model performs well on the training dataset but

not on the test dataset, the model does not generalize well. This is also called overfitting. Here, the model

found a connecting pattern between features and labels, which is exclusively found in the training dataset

and not shared with the data of the test dataset. If the model performs well on both training and test dataset,

it generalizes well. However, the model can also happen to perform bad on both datasets, which is then

called underfitting. When the model is underfitting, this often means that the patterns underlying the data

relevant to the task are too complex to be described by the model (E.g., a linear model used to fit a quadratic

function.). It is also possible the model does not yet have enough experience to uncover this pattern. All

three possible results are illustrated in Figure 5. (Goodfellow et al. 2016, pp. 109–110)

Figure 5. Three graphs with a line fitted to training data. Green points are part of the

training dataset and blue points part of the test dataset. In the left graph, the line is over-

fitting. It describes the green points very well but not the blue ones. In the graph in the

middle, the line is overfitting. It describes neither green nor blue points appropriately. In

the right graph, the line describes both green and blue points decently indicating good

generalization.

Based on Nguyen and Zeigermann (2021, pp. 92–95).

13 THEORETICAL FOUNDATIONS

There are broadly three types of machine learning: Supervised learning, unsupervised learning, and rein-

forcement learning.

Supervised learning takes a training dataset for learning, in which features and labels (inputs and outputs)

are present. The learning algorithm then produces a model with fitted parameters, which we can use to

acquire a prediction of the labels of new, to the model unknown input features as seen in Figure 6. (Szeliski

2022, p. 239)

Executing the model with previously unseen data as input to predict unknown labels is sometimes referred

to with the term inference, even though this term is ambiguous and can thus create confusion (Zhang et al.,

p. 92).

Common tasks solvable by supervised learning include regression and classification. For regression, the

output/label is a numerical value, and for classification, the output is one of multiple categories (classes).

An example of both tasks is displayed in Figure 7. (Szeliski 2022, p. 239)

Figure 6. Supervised learning takes training inputs and training labels as input. It outputs

a mode with learned parameters, that can be used to predict outputs for new, to the model

unknown inputs.

Based on Zhang et al. (2021).

Figure 7. Example of regression: Fitting line to dataset (left), and example of classifica-

tion: Line dividing dataset into two distinct classes (right).

Based on Soni (2018).

THEORETICAL FOUNDATIONS 14

Unsupervised learning takes a training dataset similar to supervised learning. However, the dataset consists

only of features, and does not have corresponding labels. Thus, the learning algorithm is supposed to find

patterns inside the dataset on its own. (Szeliski 2022, p. 257)

Both supervised and unsupervised learning can be summarized under the term offline learning because

training takes place before and independently of the environment in which the model is later used. This is

problematic if the environment changes, either independently or in response to results of the machine learn-

ing model. E.g., a model might initially be able to filter out all spam emails received but the attacker could

alter their writing style in an attempt to evade the detection.

Reinforcement learning differs from the previous approaches. Here, a so-called agent learns a policy during

exposure to the environment. I.e., the agent perceives the evolving environment and takes this into account

for future actions. For this, the agent can observe the environment and take actions influencing the envi-

ronment. Furthermore, the agent receives a reward for every action taken. This reward is determined by an

objective function judging how successful the action of the agent was for achieving the task. Based on the

reward, the learning algorithm aims to improve the policy to receive a reward as high as possible. The

interaction of the various parts can be seen in Figure 8. (Zhang et al., p. 31)

2.5.1. Support Vector Machine

One algorithm in the domain of supervised machine learning is support vector machines (SVMs). The fol-

lowing statements on SVMs are based on Bishop (2006, pp. 325–339).

Essentially, an SVM divides features of a dataset into two classes. It does this by learning a linear function,

which splits the dataset in two. All data points lying on one side of the function are categorized as one class

while all data points on the other side are categorized to the other class. The distance between the function

and the nearest data point of a class is called margin. To find an appropriate linear function dividing the

data, this margin is maximized.

Figure 8. Interaction of agent and environment through observation, action, and reward.

Based on Zhang et al. (2021, p. 31).

15 THEORETICAL FOUNDATIONS

However, this approach only works for a dataset containing two classes for which the data points are line-

arly separable. If they are not linearly separable, a so-called soft-margin is introduced meaning the margin

is allowed to take on negative values for data points that prevent linear separation otherwise. Both variants

are shown in Figure 9.

For datasets consisting of multiple classes (i.e., more than two classes), there exist two approaches summa-

rized under the term multiclass SVMs.

The first approach trains as many SVMs as there are classes. Each SVM is responsible for one class and

trained by treating this exact class as one class while grouping all other classes to a second class. Because

of this, it is also named one-versus-the-rest approach. It can be seen in Figure 10 (left).

The second approach goes through all possible pairings of two classes from the entirety of classes. It trains

an SVM on each of them. When given a data point, each SVM votes to which of its classes the data point

belongs. The class receiving most votes is then chosen as predicted label. This approach is sometimes re-

ferred to as one-versus-one and visualized in Figure 10 (right).

Figure 9. SVG with hard margin separating linearly separable data into two distinct clas-

ses (left) and SVM with soft margin for data that is not linearly separable (right).

Based on Nguyen and Zeigermann (2021).

Figure 10. Multiclass SVM approaches: One-versus-all separating each one class from all

other classes (left) and one-versus-one separating pairs of classes one by one (right).

Based on baeldung (2020).

THEORETICAL FOUNDATIONS 16

2.6. Deep Learning

It is different to other machine learning approaches insofar that input values are transformed into output

values by performing multiple operations on it one after another (Zhang et al., p. 19).

This chapter starts with an explanation of the most basic model family for deep learning. After this, it shows

how learning works in the context of this model family. Finally, it gives an explanation on a different model

family especially used for image recognition as well as metrics used in the domain of deep learning.

2.6.1. Multilayer Perceptrons

There are different terminologies used for the most basic type of deep neural networks (DNNs): Deep feed-

forward network, feedforward neural networks or multilayer perceptron (MLP) (Goodfellow et al. 2016, p.

164; Zhang et al., p. 167). This type was initially derived from what was understood of the human brain

and its nervous system at the time of its invention (Da Silva et al. 2016, p. 11). As the different names

already imply, this type of DNNs consists of many neurons that are interconnected through a network. More

specifically, a network is a structure of multiple layers chained together where each layer in turn is com-

posed of multiple neurons (Zhang et al., p. 167).

A single neuron is typically comprised of the following components: It has a vector of input values x and

an output value y. Additionally, it has multiple parameters and an activation function, which can be seen as

properties of the neuron. The parameters are a vector of weights w and bias b. (Da Silva et al. 2016, p. 12;

Szeliski 2022, p. 270)

17 THEORETICAL FOUNDATIONS

The neuron computes its output value y from its input vector x in the following manner: At first, it weights

each input value xi, i.e., each input xi is multiplied with its corresponding weight wi. Then, all weighted

inputs are summed up. This is equivalent to the dot product of vector x and w. After this, the neuron adds

bias b to the sum. At last, an activation function is applied to the result yielding the final output y of the

neuron. The process as a whole is visualized in Figure 11. (Da Silva et al. 2016, pp. 12–13; Szeliski 2022,

p. 270)

There exist various activation functions as seen in Figure 12, the most popular including rectified linear

unit (ReLU) and sigmoid. The ReLU function outputs the maximum of the input and zero bounding the

output to values equal to or greater than zero. The sigmoid function maps the input to the range of zero to

one. Another important activation function is the softmax function. It is similar to the sigmoid function

(Mercioni and Holban 2020, p. 144). However, it takes not one value but a vector as input. It is thus applied

to a layer of neurons and not on a neuron individually. It maps each value of the vector to a number between

zero and one. The results are then normalized producing a probability distribution. All values of the output

vector add up to one (Banerjee et al. 2020, p. 2; Szeliski 2022, p. 274). This probability distribution is often

useful in the context of multiclass tasks. Activation functions are needed to give DNNs capabilities beyond

linear machine learning models. (Ansari 2020, pp. 146–151; Zhang et al., pp. 169–173)

Figure 11. Internals of an artificial neuron: Input is weighted and summed up with a bias.

After applying an activation function, the output is obtained.

Based on Da Silva et al. (2016, p. 12).

THEORETICAL FOUNDATIONS 18

In this type of DNN, a neuron in one layer is connected to each neuron of the successive layer. Meaning

the output value of this neuron is also an input value for each neuron in the following layer. Because of this,

the size of the input vector of these neurons is equal to the number of neurons in the previous layer. This

way of connecting the neurons gives this type of layer its name: Fully connected layer (fcl). There are other

types of layers. Some of which, namely convolutional layers and pooling layers, will be explained in section

2.6.3 because they are relevant for computer vision tasks. (Szeliski 2022, pp. 271–272; Zhang et al., p. 169)

An MLP consists of one input layer, a varying number of intermediate so-called hidden layers and one

output layer. Hidden layers and output layer are all fully connected layers. However, the input layer is

different to all other layers. It simply represents the input feature vector and does not include any neurons

or other computations whatsoever. The name of the hidden layers stems from the fact that no desired outputs

are known for these layers. It must thus be derived during learning, which will be covered in the next section.

The output layer provides the final result of the MLP. Since training is supervised, the desired results of

Figure 12. Widely used activation functions: Rectified linear unit (ReLU) is a linear func-

tion for positive values and equal to zero for negative values. Leaky rectified linear unit

(Leaky ReLU) is the same for positive values but uses a fraction of the value for negative

values. Hyperbolic tangent (tanh) maps values to a range of negative and positive one. The

sigmoid function is similar but maps to values between zero and one.

Based on Szeliski (2022, p. 273).

ReLU Leaky ReLU

tanh sigmoid

19 THEORETICAL FOUNDATIONS

this layer are known when training the MLP because ultimately the output is supposed to predict the label

belonging to the input feature vector. Usually, the output layer uses the softmax activation function to ac-

quire a probability distribution over all classes (Szeliski 2022, p. 274). A graphical example of an MLP,

where the network is visualized as a graph with neuron as vertices/nodes and connections between neurons

as edges, can be seen in Figure 13. (Goodfellow et al. 2016, p. 165; Zhang et al., p. 169)

2.6.2. Optimization

MLPs have different types of properties that can be tweaked. On the one hand, they have so-called hyperpa-

rameters like the number of layers and the number of neurons in each layer. These are up for a human-

being to decide. On the other hand, neurons have internal parameters themselves. Each neuron has a weight

and a bias, which can be adjusted. Because of the way neurons are interconnected, the number of parameters

is much higher for MLPs than for other machine learning algorithms. One could assign each parameter a

random value, provide an input feature vector, and perform all the calculations discussed in the previous

Figure 13. Basic example of an MLP with two hidden layers as graph with neurons as

vertices/nodes and connections as edges. Every input in the input layer is connected to

every neuron of the first hidden layer, each of which is in turn connected to every neuron

of the second hidden layer. All those neurons are interconnected with each neuron of the

output layer resulting in the final output of the MLP.

Based on Da Silva et al. (2016, p. 23).

THEORETICAL FOUNDATIONS 20

section above to retrieve a result. Performing these calculations is also named forward propagation or for-

ward pass because it starts with the input layer and end with the output layer. However, the likelihood that

this forward propagation will yield an in any way meaningful result is vanishingly small. Therefore, a

learning algorithm must tweak the parameters for good results. (Zhang et al., p. 180)

There are different ways to look at and explain the working principles of the learning algorithm. Put simply,

the learning algorithm uses supervised learning in the following manner. At first, it performs forward prop-

agation with the input vector of a datapoint in the training dataset. Then, it compares the outputs of the

MLP with the desired outputs provided by the training sample and slightly adjusts the parameters in a way

that moves the actual outputs a little bit closer to what is desired. This process as shown in Figure 14 is

repeated many times until the difference between actual and desired outputs does not decrease anymore.

However, this is a very simplified view at what is happening during learning. (Moore et al. 2021)

Loss function

More specifically, this difference between actual output produced by forward propagation and desired out-

put as given by the label is quantified using a loss function. There exist various loss functions. E.g., a very

popular loss function for multiple classes is categorical cross-entropy. A high output of the loss function

means prediction is way off, an output near zero means good prediction accuracy. Since this loss function

measures a difference, it cannot be negative. (Szeliski 2022, p. 280)

Figure 14. An example of an MLP trained on images of digits. First, forward propagation

is performed. Then, actual outputs are compared with desired outputs and parameters

(weights) are adjusted to get closer to the desired result.

(Moore et al. 2021)

21 THEORETICAL FOUNDATIONS

Backpropagation

To calculate predictions for different inputs, all internal parameters of the MLP are regarded as fixed and

inputs are seen as variable. For learning, this is reversed. The input is fixed but the internal parameters of

the MLP can be adjusted. As a result, the loss function is a multivariate function, which has as many vari-

ables as there are internal parameters to the MLP.

Now, to improve the accuracy of the MLP, the loss function must be minimized. In other words, the goal

is to find the global minimum of the loss function by adjusting the internal parameters. This is an optimi-

zation problem that can be solved using derivatives. The chain rule is used to calculate the gradient of the

loss function, which contains information about how a small change in each of the parameters changes the

final output of the function. I.e., does a slightly higher value for a parameter increase or decrease the output

value and how strongly does the output react to that change.

Because the chain rule requires calculations for the gradient to be performed by starting at the last layer and

working backwards until the first layer, this process is named backpropagation as opposed to forward prop-

agation. Backpropagation is performed computationally. It requires the computer to keep track of depend-

encies of individual parts of the MLP in a graph structure. These computations are referred to as automatic

differentiation or autograd in short (Zhang et al., p. 68). (Goodfellow et al. 2016, pp. 204–207; Zhang et al.,

pp. 181–182)

Learning Algorithms

The gradient resulting from backpropagation is multiplied with a hyperparameter named learning rate and

subtracted from the current parameters to receive updated parameters that are used for all future calculations.

When performing forward propagation with these updated parameters on the same datapoint used for back-

propagation, the output of the loss function should now be lower indicating improved prediction of the

MLP for that particular datapoint after one step. If the dataset consisted of one datapoint in total, all that is

left to do is to repeat this step until improvements stall. This is called gradient descent. However, an MLP

trained on one training sample would not be able to learn any general patterns. It would overfit to that one

datapoint and not be of any use.

Thus, a larger dataset is needed, and backpropagation and updating of parameters must be repeated for

many datapoints in the dataset. Running calculations for all datapoints once is referred to as one epoch of

training. Since the optimal configuration of parameters differs for every datapoint, the gradients would vary

greatly and output of the loss function over time would be very noisy. This way of learning explained so

far, where parameters are updated after calculation of one datapoint, is named stochastic gradient descent

(SGD). (Goodfellow et al. 2016, pp. 290–292; Szeliski 2022, pp. 287–288)

THEORETICAL FOUNDATIONS 22

Apart from SGD, there is also minibatch stochastic gradient descent and gradient descent using whole

batches. For minibatches, not one but multiple datapoints are used and backpropagation is performed for

all of them before updating the parameters with the summed up gradients of these datapoints. For whole

batches, this goes even further and the entire dataset is used to calculate updated parameters afterwards. All

these approaches have pros and cons. E.g., optimization using batches has problems with local minima,

which are not the best solution to the optimization problem. Additionally, it requires the most memory of

all approaches and can be very inefficient as explained in Figure 15. Sometimes, this can be overcome by

adjusting the learning rate. (Goodfellow et al. 2016, pp. 290–292; Szeliski 2022, pp. 287–288)

However, there exist more sophisticated algorithms like ADAM (Kingma and Ba 2014), which make use

of additional information to be more efficient. ADAM specifically uses momentum calculated using previ-

ous gradients. This is comparable to a marble rolling down a hill. Even if the direction of steepest descent

differs from which way the marble is currently rolling, it does not directly move in this direction but slowly

turns because of the momentum carried on from before. This would work well to counter the effect dis-

cussed in Figure 15. (Goodfellow et al. 2016, pp. 292–293; Szeliski 2022, pp. 289–290)

Hardware

Because of high parameter count and large datasets, the learning process requires quite a lot of computing

power and memory especially for deep learning. Since most of the computations are matrix multiplications

and graphic processing units (GPUs) happen to be specialized to perform those quickly and in parallel,

GPUs are well suited as hardware for training. Apart from GPUs, there exist some hardware architectures

Figure 15. Graph showing gradient descent (red line) for a function with two inputs using

an entire batch. Black lines indicate points where output level of the function is the same.

Therefore, the shown example ca be thought of like an elongated valley. Because of this,

gradients (black arrows) do not point to the center of the valley. This results in alternating

gradients after every step of gradient descent making optimization take much longer com-

pared to the shortest path downhill.

(Goodfellow et al. 2016, p. 293)

23 THEORETICAL FOUNDATIONS

like tensor processing units especially optimized for this task. Eventually, quantum computers could also

become useful for this (Biamonte et al. 2017). (Zhang et al., pp. 34–36; Szeliski 2022, p. 964)

Methods for Faster/Better Results

There are some additional measures apart from improved learning algorithms that can be taken to further

improve the results.

To reduce training times in practice, transfer learning is a widely adopted method. When using a neural

network that someone else already trained on some dataset, one can reuse the resulting parameters and

continue training on a different dataset. Because part of what the neural network already learned can often

be useful beyond its initial dataset (E.g., for images the first layers often learn more generalized patters like

edges, textures and shapes, that are present in other data as well), less training is needed to achieve similar

results compared to training of a neural network with randomly initialized parameters. (Zhang et al., p. 606)

When such a pretrained neural network is used as part of a larger network, the rest of the neural network

must be trained from scratch. However, the pretrained part is likely to already be somewhat optimized.

Thus, its parameters will not change as much as the rest. This case is referred to as fine-tuning. (Zhang et

al., p. 606)

Sometimes, it is desired to train parts of a neural network in isolation. For this, all parameters not belonging

to that part are frozen meaning they are used for forward propagation, but parameters are not updated and

kept fixed during learning.

In general, neural networks have many more parameters than other machine learning algorithms. This

makes them more likely to overfit. This means decreased performance for new data. Two ways to counter

this are data augmentation and dropout.

Overfitting can be prevented by using larger datasets. However, if the is no more data that can be collected,

a workaround is needed. Data augmentation is the process of changing the appearance of already existing

datapoints and using this as additional datapoints for training (E.g., rotating, scaling or otherwise altering

an input image.). (Zhang et al., pp. 597–602)

Dropout is the process of randomly disabling a part of the connections between neurons. I.e., these connec-

tions are not used during calculations at all (neither forward propagation nor backpropagation). Therefore,

a neural network cannot rely on a single connection to detect a certain feature and must find other ways to

detect it resulting in better generalization. (Zhang et al., pp. 193–194)

THEORETICAL FOUNDATIONS 24

Example in Two Dimensions

For the case of binary classification of points in a two-dimensional plane, there is a very neat way to visu-

alize the learning process in a different way by computing the output of the MLP for the entirety of the

plane and assigning colors to the classes to get a sense of how learning solves the task. Essentially, the

parameters are tweaked in such a way that the entirety of neurons represent a nonlinear boundary separating

the classes. An example is given in Figure 16.

The left plot shows the output of an MLP where parameters are initialized at random, and no training took

place. The colors of the background do not correspond with the color of the datapoints and are in general

very neutral. Thus, correct classifications are low, and uncertainty is high.

The plots in the middle and on the right show the output of MLPs after training. In both plots, there is a

very clear blue center containing all blue datapoints while the surrounding area is clearly yellow containing

all yellow datapoints. This implies that training managed to adjust the parameters very well to solve the

given task. In the middle, the boundary between yellow and blue forms a polygon while the boundary on

the right forms an oval. This is due to different activation functions utilized in the MLPs. For the results in

the middle, ReLU was used as activation function. For the right, sigmoid was used as activation function.

This shows how different activation functions can influence the behavior of a MLP for learning.

In a way, the plots are comparable to those obtained by SVMs except there are two differences. Classifica-

tion is not linear because of activation functions and there is no clear binary border but some degree of

uncertainty near the border. In general, MLPs with higher parameter count can solve more complex prob-

lems than given in the example shown in Figure 16.

Figure 16. Three two dimensional plots with datapoints of two classes (marked in yellow

and blue), where blue points are in the center and encircled by a ring of yellow points. The

background is colored according to what class a created MLP would assign to a point at

that position. Shades in between yellow and blue indicate uncertainty. In the left plot, back-

ground has no clear colors. In the middle, a blue polygon is surrounded by yellow back-

ground. In the right plot, a blue oval is encircled by yellow background.

Based on Carter, Daniel Smilkov and Shan (2017).

25 THEORETICAL FOUNDATIONS

The source for the plots is an interactive website and it is encouraged to visit the source as it provides a

very intuitive way of understanding MLPs.

2.6.3. Convolutional Neural Networks

The previous sections discussed the basics of deep learning including the model architecture and learning

process of MLPs. While MLPs can be used for computer vision tasks, they are invariant to the structure of

their inputs. Changes in the order of the input vector prior to learning do not influence the potential capa-

bilities of the MLP after learning. However, this means that the MLP does not make use of the order even

when knowledge of the structure can be advantageous. In images for example, pixels nearby are more likely

to contain information that is related to each other. MLPs can gather information about the structure during

learning but it would be desirable to retain and utilize this information from the beginning on because it

reduces parameter count and thus time needed for computations. A network type doing exactly this are

convolutional neural networks (CNNs). They can be beneficial for tasks where inputs have a known matrix-

like structure as images, time-series and audio-sequences do (Goodfellow et al. 2016, p. 326; Zhang et al.,

p. 233).

To take advantage of the input’s structure, convolutional neural networks utilize new layer types named

convolutional layer and pooling layer which will be explained in the following paragraphs. (O'Shea and

Nash 2015, p. 4)

The explanation for convolutional layers uses inputs with two dimensions. An example for such an input

would be a greyscale image. Nonetheless, this concept can be applied to inputs of arbitrary numbers of

dimensions (including one dimension). Convolutional layers have a matrix of weights called kernel. This

kernel is typically much smaller than the entire input matrix. Convolutional layers start with a rectangular

cutout the same size as the kernel in one corner of the input matrix. Each input value of the cutout is mul-

tiplied by the corresponding weight of the kernel. Afterwards, all results are summed up and an activation

function is applied resulting in one output value. As next step, this same cutout is shifted over the input

matrix so that it now contains different input values. Again, multiplication, summation and activation are

performed on the input values. The same weights and the activation function from the previous cutout are

used again. This shifting is repeated for every cutout in the input matrix resulting in a matrix of outputs.

Because of this shifting, the cutout is usually referred to as sliding window. The steps happening before the

THEORETICAL FOUNDATIONS 26

activation function are illustrated in Figure 17 for two positions of the sliding window. Each convolutional

layer has an arbitrary number of kernels. (O'Shea and Nash 2015, pp. 5–6; Zhang et al., pp. 240–242)

The resulting output matrix is sometimes referred to as feature map. The reason for this can be deducted

from Figure 18. Because the weights of a kernel are fixed for the entirety of the input, each kernel is re-

sponsible for one specific feature in the input image. Whenever a feature is present in the input image, the

output value of the kernel responsible for the feature spikes at the position of the feature. Therefore, the

output matrix maps features to locations in the input image. (Zhang et al., pp. 244–245)

The sliding window of the kernel can be shifted by one or more entries in the input matrix. The amount of

shifting applied each time is a hyperparameter named stride. Another new hyperparameter is padding. Pad-

ding indicates if and how the original input matrix is surrounded with artificially added inputs (possible

values for these added inputs are same as real input next to it and all equal to zero). This is done, because

Figure 17. Shown above is an example of two positions of the sliding window multiplied

with the kernel resulting in a single output value per position.

Figure 18. Each cell represents the learned weights of a kernel for an image with three

color channels. The various kernels picked up specific features of the input like edges, tex-

tures, or color combinations.

(Krizhevsky et al. 2012, p. 6)

27 THEORETICAL FOUNDATIONS

whenever the sliding window is greater than one, the output matrix is smaller than the input matrix, which

is not always a desired result. E.g., with a sliding window of 3 × 3 and a stride of 1, an n × n input matrix

leads to an n-1 × n-1 output matrix. (O'Shea and Nash 2015, pp. 5–6; Szeliski 2022, p. 294)

In a way, the approach used in a convolutional layer is comparable to a neuron of a fully connected layer.

The input is weighted and summed up. Then, an activation function is applied. But instead of connecting

the neuron to every input at the same time, the calculations are performed for one cutout at a time while

reusing the same neuron with the same weights for all of the cutouts. This greatly reduces parameter count

(Lecun et al. 1989, p. 544).

Pooling layer yet again use a sliding window of fixed size. However, they do not perform the same calcu-

lations on this window as convolutional layers do. When using average pooling, all inputs values inside the

window are averaged resulting in a single output. For max-pooling, only the highest input value is return

as output value. An example for the process of max pooling is provided in Figure 19. (Ansari 2020, p. 200;

Goodfellow et al. 2016, p. 335)

Usually, CNNs use convolutional layers and pooling layers in the beginning followed by one or more fully

connected layers as shown in Figure 20. Since the output of those layers is multidimensional, it must be

flattened to one dimension to be fed into fully connected layers. Some network architectures only use con-

volutional layers and pooling layers. These are typically named fully convolutional networks (Szeliski 2022,

p. 272). (Ansari 2020, p. 201)

Figure 19. Max pooling with a window size of 2 x 2 applied to a sample input. The maximum of

all values in the window is computed. Then, the sliding window is moved to the next position and

the process is repeated.

THEORETICAL FOUNDATIONS 28

More complex model architectures of DNNs often rely on pretrained common CNNs as base network.

These base networks are sometimes referred to as backbones. Some of those are presented in Table 2.

Table 2. Common Convolutional Neural Network Architectures. Based on (Bharati and Pramanik 2020,

pp. 659–660).

LeNet (Lecun et al. 1998)

AlexNet (Krizhevsky et al. 2012)

ZF Net (Zeiler and Fergus 2014)

GoogLeNet (Szegedy et al. 2015)

VGGNet (Simonyan and Zisserman 2014)

ResNet (He et al. 2016)

Figure 20. Example of simple CNN architecture with one convolutional layer, one pool-

ing layer and two fully connected layers.

 (O'Shea and Nash 2015, p. 4)

29 THEORETICAL FOUNDATIONS

2.6.4. Metrics

There exist various metrics to measure performance of DNNs. Some of those are relevant for the under-

standing of related work and judgement of the performance of their results as well as those of this thesis.

Therefore, this section gives a brief explanation for each of them.

An understanding of the possible outcomes of a prediction and their relationship is useful for the explana-

tion of the first two metrics: Precision and recall. Two distinctions can be made resulting in 4 possible

combinations when detecting a class. First, there is prediction of the DNN on the one hand and the true

reality on the other hand. Second, for a certain class, both can have the value of match and non-match. I.e.,

a match or a non-match can be predicted and at the same time a match or a non-match can be true. A

predicted match that is also a true match is named true positive (TP), a predicted match that is a true non-

match is a false positive (FP), a predicted non-match that is a true non-match is a true negative (TN), and a

predicted non-match that is a true match is a false negative (FN). This can be displayed as a matrix. An

example is given in Figure 21. (Szeliski 2022, p. 442)

Precision

In terms of the previously introduced matrix, precision is calculated using this formular:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∶=
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

𝑃′

This means that precision is the ratio of true matches that are predicted as being matches to predicted

matches. It leaves out predicted matches that are true non-matches. (Szeliski 2022, p. 443)

Recall

In contrast to precision, recall is the ratio of true matches that are predicted as being true out to true matches.

This leaves out true matches that are predicted non-matches. (Szeliski 2022, p. 443)

Recall is calculated as follows (Szeliski 2022, p. 443):

𝑅𝑒𝑐𝑎𝑙𝑙 ∶=
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑃

Figure 21. Example of matrix of possible combinations with TP, FP, TN and FN.

 (Szeliski 2022, p. 442)

THEORETICAL FOUNDATIONS 30

Accuracy

Accuracy is the ratio of true and predicted matches, and true and predicted non-matches to all matches and

non-matches (Szeliski 2022, p. 443):

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∶=
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙

Intersect over Union (IoU)

IoU is a common metric used to evaluate the accuracy of bounding-boxes. There is always a ground-truth

bounding-box as provided by the dataset and a bounding-box predicted by a DNN. As the name implies,

IoU is the ratio of the intersect of both bounding-boxes to the union of both bounding-boxes as visualized

in Figure 22. (Szeliski 2022, p. 380)

This is the mathematical formular for calculation (Szeliski 2022, p. 380):

𝐼𝑜𝑈 ∶=
𝐵𝑝𝑟 ∩ 𝐵𝑔𝑡

𝐵𝑝𝑟 ∪ 𝐵𝑔𝑡

Figure 22. Schematic example of IoU (a) and example using a real image (b). (Szeliski

2022, p. 380)

31 THEORETICAL FOUNDATIONS

Precision-Recall-Curve

The precision-recall-curve is always calculated for a single class. It is calculated in the following way: First,

a IoU value is chosen as threshold to decide if a bounding-box was properly detected. I.e., if the IoU of

ground-truth and prediction is greater than the threshold, it is a true positive. Then, precision and recall are

sampled for different confidence score of the predictions of the DNN. These are plotted as points and con-

nected by a line as shown in Figure 23. (Szeliski 2022, p. 381)

Average Precision (AP) and Mean Average Precision (mAP)

The average precision is calculated by computing the area under the precision-recall-curve and mAP is

simply AP averaged over all classes. Because a IoU threshold must be chosen for the precision-recall-curve,

AP and mAP also depend on this IoU threshold. Therefore, they are often provided with the IoU threshold

used. E.g., mAP with an IoU threshold of 0.5 is often written as mAP@IoU=0.5. (Szeliski 2022, p. 381)

2.7. Deep Neural Networks for Object Detection and Instance Seg-

mentation

This section covers ideas and versions of R-CNN and YOLO, both of which are popular model architectures

for object detection using CNNs as base networks. It has a separate section for Mask R-CNN, which is a

version of R-CNN that enables instance segmentation in addition to object detection in contrast to other

versions.

Figure 23. Precision-recall-curve for a single class and IoU threshold. For different con-

fidence scores, precision and recall are calculated and points are plotted and connected.

(Szeliski 2022, p. 381)

THEORETICAL FOUNDATIONS 32

2.7.1. R-CNN Family

The following approach at object detection is based on region proposals and convolutional neural networks.

Thus, it is given the name R-CNN, which stands for Regions with CNN features (Girshick et al. 2014a).

Fast-RCNN and Faster-RCNN are successors building on this method to improve speed of inference and

training time (Bharati and Pramanik 2020, pp. 660–662).

R-CNN

The following statements on R-CNN are mainly based on Girshick et al. (2014a).

The architecture of R-CNN consists of three stages, which are displayed in Figure 24 (left): Region pro-

posals, feature extraction and object category classifiers. After analysis revealed inaccurate bounding-boxes,

the authors of the paper added bounding-box regression to the third stage of the architecture to increase

accuracy.

First Stage: R-CNN starts with many probable candidates for objects and reduces the number later. To

extract around 2000 of these candidates, so-called region proposals, from the input image, R-CNN utilizes

Selective Search as discussed in section 2.4.2.

Second Stage: Each of the individual proposals is fed into a CNN for feature extraction. This is visualized

in Figure 24 (right). The utilized CNN is AlexNet from Table 2 proposed by Krizhevsky et al. (2012). Since

CNNs can only be applied to a fixed input vector, the region proposals are warped to a size of 227 × 227

pixels as seen in Figure 24 (left).

Figure 24. Original R-CNN architecture without bounding-box regression: First stage:

Region proposal extraction, second stage: Convolutional feature computation and third

stage: Classification of region proposals (left).

Based on Girshick et al. (2014a).

Architecture after error analysis with focus on feature extraction using a CNN, classifica-

tion via SVMs and after both of those bounding-box regression on every region proposal

(right).

Based on Bharati and Pramanik (2020, p. 660).

33 THEORETICAL FOUNDATIONS

Third Stage: This stage is responsible for the removal of false region proposals (i.e., proposals that do not

contain an object) and for classification and refinement of region proposals. The removal is handled by

adding one further class to the set of possible classes, which is considered as background. All region pro-

posals that are later assigned to this class will not be considered as objects and are thus removed from the

results. For each possible output class (classes for objects and class for background), a linear SVM trained

on that class calculates a score for the extracted features of each region. This equals to the one-versus-the-

rest multiclass SVM approach. As result, each region proposal is assigned a class. Afterwards, a linear

regression model similar to Felzenszwalb et al. (2010) trained specifically for the detected class of a region

predicts an improved bounding-box using information of the feature vector.

Finally, per class but on all proposed regions, a greedy non-maximum suppression rejects all regions that

have an IoU overlap above a learned threshold with another region having a higher score for the same class

calculated by the SVM.

R-CNN outperforms previous results by 30% (Girshick et al. 2014a, p. 11).

However according to Girshick (2015, p. 1440), R-CNN has several drawbacks: Detection of objects is

slow taking 47s per image on a GPU. The single stages have to be trained sequentially one after another

and training requires a lot of memory and time.

Discussion of Figure 24 (right) and its Source

Figure 24 (right) is an altered and extended version of a figure provided in Bharati and Pramanik (2020, p.

660). Both figures are visible side-by-side in Figure 25.

The original figure displays the third stage of the R-CNN architecture with feature extraction performed by

CNNs, classification using SVMs and bounding-box regression. Here, an individual arrow points from each

Figure 25. Original version (left) and modified version (right) of figure from Bharati and

Pramanik (2020, p. 660) in comparison. They both visualized the architecture of R-CNN

with a focus on feature extraction, classification via SVMs and bounding-box regression

for each region proposal. The original shows arrows from feature extraction to classifica-

tion and bounding-box regression while the modified version has an additional arrow

pointing from classification to bounding-box regression.

THEORETICAL FOUNDATIONS 34

CNN to bounding-box regression and classification indicating that both regression and classification utilize

features generated by CNNs. According to Girshick et al. (2014b) however, regression not only relies on

features but also classification since it is trained for each individual class and outputs the regression corre-

sponding to the detected class. Thus, not having an arrow point from classification to regression makes the

figure incomplete. This is why another arrow has been introduced in the modified version.

Fast R-CNN

This section is based on Girshick (2015).

Fast R-CNN was developed to provide solutions for the drawbacks of R-CNN by modifying the model

architecture. The result of the modifications can be seen in Figure 26.

Instead of running a CNN for every region proposal, a CNN processes the whole input image producing a

feature map of the entire image. Therefore, the number of times the CNN must be calculated is reduced

from around 2000 times to once per image. This is beneficial for speed of training and inference.

The algorithm for identification of region proposals is not adjusted and in the paper on Fast R-CNN con-

sidered as external dependency. Each region proposal is projected onto the feature map produced by the

CNN resulting in a rectangular cut-out of the map. Such a cut-out is named region of interest (RoI).

Figure 26. Fast R-CNN architecture: 1. CNN and RoI projection on convolutional feature

map. 2. For each RoI: RoI pooling layer, fully connected layers, split into branches for

classification using fully connected layer and softmax activation, and bounding-box re-

gression.

(Girshick 2015)

35 THEORETICAL FOUNDATIONS

On each RoI, a RoI pooling layer is applied. This layer converts the features of a rectangular region of

arbitrary size into a feature map with a fixed, reduced size. It does this by dividing the input region into

approximately equally sized sub-regions, where the number of sub-regions amounts to the size of the fixed,

reduced output feature map. On each sub-region, the RoI pooling layer then applies max-pooling resulting

in a singular output value for each of them. A simplified illustration of this process can be found in Figure

27. This layer is necessary to feed the information into the following fully connected layers, which can only

process a fixed number of inputs. The result is a RoI feature vector for each RoI.

For the third and final stage, classification by an SVM is substituted with a fully connected layer with

softmax activation predicting the probabilities for each of the object classes in addition to a background

class for RoIs that do not represent an object. The bounding-box regression is done in parallel and calculated

for each individual class per RoI. Then, the calculated bounding-box corresponding to the detected class is

chosen.

To enable training of the whole network in one stage, a multi-task loss is calculated consisting of the loss

function for classification as well as bounding-box regression. This simplifies training. In addition, as

shown in the paper, it increases the mAP value. This can be explained by the fact, that both tasks (classifi-

cation and regression) can have an influence on each other, and while isolated training cannot take ad-

vantage of this connection, the multi-loss approach can.

Faster R-CNN

The statements of this section are based on Ren et al. (2017).

While previous model architectures of this family (R-CNN and Fast R-CNN) utilized Selective Search,

they are agnostic towards the actual algorithm used for generation of region proposals. This leaves space

for optimization of that specific stage. Faster-RCNN introduces a region proposal network (RPN) that re-

places the previously used algorithm and jointly makes use of the already existing CNN feature map of Fast

Figure 27. Simplified illustration of working principle of RoI pooling layer: Division of

input region with size of 4 × 8 into 2 × 2 sub-regions with size of 2 × 4 and selection of the

highest value as output value.

THEORETICAL FOUNDATIONS 36

R-CNN. This eliminates the overhead added by selective search and keeps the computational overhead of

the RPN itself light (overhead for region proposals is ~10 milliseconds).

The integration of the RPN into the existing model architecture of Fast R-CNN can be inspected in Figure

28. The feature map produced by the CNN was previously only used for regression and classification of

region proposals. Now, the RPN uses this map as input. Its output, which are the suggested RoIs, are fed

into the RoI pooling layer along with the feature map.

Internally, the RPN produces RoIs by applying a sliding window on the convolutional feature map just like

convolutional layers do and inputting each window to a network reducing the number of features. Then,

this is fed into two fully connected layers, one for classification and one for bounding-box regression.

However, classification and regression are not done only once but multiple times per window. This is be-

cause for each window, there are multiple so-called anchor boxes defined acting as base areas with different

scales and aspect ratios (i.e., three scales of 128, 256 and 512, and three aspect ratios of 1:1, 1:2 and 2:1).

While these anchor boxes are not actually present in the network, they are used as base areas in the loss

function for training of classification and regression. As a result, the layer for classification uses softmax

activation to obtain a probability distribution of the two possible outcomes for each anchor box: object or

no object. The layer for regression outputs four values for each anchor box acting as offsets to the left, right,

Figure 28. RPN utilizing convolutional feature map for region proposals. Thus, flow of

information from the feature map onwards is split going into the RPN and the RoI pooling

layer. Proposals generated by the RPN are also fed into the RoI pooling layer.

(Ren et al. 2017)

37 THEORETICAL FOUNDATIONS

top and bottom of the base area. Therefore, every anchor box receives a score for objectiveness (whether it

is an object or background) and bounding-box regression. This process is visualized in Figure 29.

Training of the whole network including the RPN takes place in the following four steps. At first, the RPN

is trained end-to-end using a pre-trained model as CNN with initialized weights. As second step, everything

except the RPN is trained using again a pre-trained CNN. Here, the region proposals resulting from step

one are used. As third step, the trained CNN from step two replaces the one previously used for the RPN

and only the layers belonging to the RPN are fine-tuned. This merges the two networks meaning they now

both use a common CNN. As final step, all layers of the CNN and RPN are frozen, and all remaining layers

are fine-tuned.

For the steps involved in training of the RPN, the anchor boxes are an important part of the loss function

and must have some definition of the desired output of the RPN for each of them. For regression, this is

simply the difference between anchor box and bounding-box of the actual object if there is one. For ob-

ject/background classification itself, the following rules are applied. All anchor boxes with the highest IoU

with a bounding-box of an object are considered as objects. Additionally, all anchor boxes with an IoU

greater than 0.7 with a bounding-box of an object are labeled as objects. All those where IoU is lower than

0.3 are seen as background. The remaining anchor boxes that do not meet any of the discussed criteria are

ignored during training.

2.7.2. Mask R-CNN

The statements on Mask R-CNN are based on He et al. (2017).

Mask R-CNN is based on Faster R-CNN. It is a framework that does instance segmentation in addition to

object detection. Thus, it provides bounding-boxes and segmentations masks together with a class label for

Figure 29. Window sliding over convolutional feature map producing offsets (left, right,

top and bottom) and class scores (object or no object) based on anchor boxes as base areas.

(Ren et al. 2017)

THEORETICAL FOUNDATIONS 38

every object recognized in an image. Mask R-CNN can also be adapted to other tasks like human pose

estimation.

According to the authors, Mask R-CNN outperforms all frameworks that participated in the

2016 COCO challenge. The challenge is a popular competition for image recognition frameworks and uses

the Microsoft COCO dataset for training and evaluation (Ready for AI 2018). This challenge took place in

the year before the publication of Mask R-CNN, which is why it did not participate in the challenge.

Mask R-CNN runs relatively fast with about 5 frames per second (FPS). Training it is also fast.

Model Architecture

Mask R-CNN is based on Faster R-CNN and does not apply major changes to the internal structure of it.

Mask R-CNN mainly adds a new, third branch for outputting masks to the model architecture of Faster R-

CNN.

As can be seen in Figure 30, Mask R-CNN has the same first stage as Faster R-CNN with a convolutional

backbone producing a feature map and an RPN for region proposals.

However, the RoI pooling layer is modified. Previously, rounding was used to only get integer values for

size and position of sub-sections. This results in misalignments, which are irrelevant for classification and

bounding-box regression but have a negative impact on mask generation. For Faster R-CNN, this quanti-

zation was removed and replaced by bilinear interpolation for non-integer values. Thus, if a feature is to be

sampled in between two integer positions of the feature map, it is not copied from one or the other location

but interpolated between both of them best describing the input image at the actual location. The name of

this updated layer is RoIAlign.

Figure 30. Mask R-CNN architecture divided in Faster R-CNN with RoI pooling layer re-

placed by RoIAlign layer, and additional mask branch.

(D. Schweitzer and R. Agrawal 2018)

39 THEORETICAL FOUNDATIONS

While Faster R-CNN only predicts class and bounding-box for each RoI in the last stage, Mask R-CNN at

the same time independently calculates a binary mask for each class. This is done by a fully convolutional

network.

Afterwards, the mask for the actual detected class is chosen as valid. This makes Mask R-CNN different to

many other model architectures, for which classification and mask generation is coupled.

Additionally, He et al. experimented with a different backbone. This DNN is named feature pyramid net-

work (FPN). Its structure processes input from large to small features and extracts feature maps at different

steps of the process resulting in features of different scales. This FPN was found to perform much better

than a conventional CNN as backbone. More on this type of network can be found in Lin et al. (2017).

2.7.3. YOLO Family

For many object detection model architectures, the process of detection is split up into multiple components,

that must be trained separately. Model architectures of the YOLO family view the whole process as one

single regression problem. They do not require multiple runs of individual components but only have one

look at the input image and base their calculations on that. Hence, the name YOLO (You Only Look Once).

(Redmon et al. 2016, p. 779)

There exist multiple model architectures building upon the first version of YOLO and each other. The most

popular and relevant of them being YOLOv1, YOLOv2, YOLO9000, YOLOv3, YOLOv4, YOLOv5,

YOLOv6 and YOLOv7. In general, YOLO is mostly known for its high detection speed allowing for real-

time detection. The following sections will discuss the working principles and advantages and disad-

vantages of each of them in chronological order. (Ansari 2020, pp. 238–247; Jiang et al. 2022, p. 1069)

THEORETICAL FOUNDATIONS 40

YOLOv1

Statements on YOLOv1 are mainly based on Redmon et al. (2016). The entire process of detection is illus-

trated in Figure 31.

At first, YOLOv1 divides the input image into a grid. Each of the grid’s cells is responsible for the detection

of objects having their center in that cell. For each cell, multiple bounding-boxes and corresponding confi-

dence scores are predicted (I.e., prediction for one bounding-box consist of a height, a width, a horizontal

and a vertical position as well as a confidence score telling the likelihood of this bounding-box containing

an object). Independently and at the same time, the neural network calculates the most likely class for each

cell. A combination of these predictions is used to determine whether the cell contains a real object and

what its bounding-box looks like. All these calculations are performed by a large CNN composed of 24

convolutional layers as well as 2 fully connected layers. The network can detect 20 different classes.

The main limitation of this first version of YOLO is weak detection for larger groups of small objects. This

is caused by the grid-based approach only allowing for one class and object to be detected per cell. For the

same reason, YOLOv1 cannot detect object of different classes that are close to each other or have over-

lapping prediction. It is forced to decide for one class. Another issue is inaccurate prediction of bounding-

boxes in cases where the shape of a detected object of a certain class deviates from the objects of the same

class seen during training.

YOLOv2

The following statements are based on Redmon and Farhadi (2017) in addition to (Ansari 2020, pp. 241–

244). The second version of YOLO introduces various improvements to eliminate the shortcoming of the

first version.

Figure 31. Detection pipeline of YOLOv1: 1. Division of input into grid, 2. For each cell:

Simultaneous class prediction and bounding-box prediction, 3. Merging of both predictions

into final detection results.

(Redmon et al. 2016, p. 780)

41 THEORETICAL FOUNDATIONS

Most notably, the part of YOLOv2 responsible for classification is fine-tuned standalone using input with

higher resolution because this higher resolution is used during detection anyway. Training of the classifi-

cation network was previously performed using a lower resolution requiring the network to adapt later.

Furthermore, all fully connected layers were removed and anchor boxes like the ones used for Faster R-

CNN were introduced. Therefore, multiple objects and classes can now be detected for every single cell

(confidence score is not calculated per cell but per anchor box). While this leads to a slight decrease of

precision, recall is improved significantly, and many more objects can be detected in a single input image.

To increase dataset size for learning, YOLOv2 uses datasets for object detection and datasets for image

classification. This is advantageous because classification datasets are more abundant and offer far more

classes as labels. However, YOLOv2 does not make use of the additional classes and only uses datapoints

for the same 20 classes offered by the object detection dataset. To be trained on these different types of

training data, the following process has been implemented for learning. Whenever a datapoint offers bound-

ing-boxes as information, it is used to train the network end-to-end. However, if a datapoint only offers a

class, the network uses this datapoint to further train only the classification part of the network. For such

cases, all other parts of the network are frozen.

A speed increase is also achieved by exchanging the convolutional backbone for a smaller one (Darknet-

19) requiring less computations per run. At the same time, this gave a small boost to detection accuracy.

YOLO9000

This section about YOLO9000 is based on Redmon and Farhadi (2017).YOLO9000 is tightly coupled with

the advancements of YOLOv2 and was proposed in a single paper with YOLOv2. While YOLOv2 still

detects only 20 different classes, YOLO9000 is able to detect 9,000 classes.

THEORETICAL FOUNDATIONS 42

This is achieved by not only training the network on an object detection dataset and the part of a classifica-

tion dataset that has the same classes as labels but the whole classification dataset with all its classes. As

mentioned in the section about YOLOv2, classification datasets usually offer far more training samples and

many more classes than object detection datasets do. When mixing datasets with different classes, some

classes are not mutually exclusive or represent a part of another class. To efficiently train YOLO9000 on

all these classes, they are structured in a hierarchical tree as shown in Figure 32.

As a result of this training process, the network did not have any training data containing bounding-boxes

for many of the classes. Nonetheless, while some of these classes have very bad detection results, some of

them are being detected quite well. According to the authors, the reason for this may be that some classes

have related classes where bounding-boxes are known and can be derived from. However, other classes

like clothes are not at all similar to anything seen in the object detection dataset.

YOLOv3

This version only introduces minor changes. The following explanations are based on the paper on

YOLOv3 from Redmon and Farhadi (2018).

Previously, the last layer of all YOLO versions used softmax as activation function to get class probabilities.

This works well for mutually exclusive classes. Since the last version introduced a hierarchical structure of

classes, that condition is not given anymore. Now, it is possible that a detection result fits well in multiple

classes (E.g., an object can be a person and a woman at the same time.). Therefore, the activation function

for the last layer calculates a logistic score for each class that is independent from other classes.

Figure 32. Cutout of hierarchical tree structure assigning low-level classes to higher-

level classes.

 (Redmon and Farhadi 2017, p. 6524)

43 THEORETICAL FOUNDATIONS

Another improvement is the prediction of bounding-boxes at different scales. There is not one feature map

on which bounding-box detection is performed but 3 of them. They are taken from different positions in

the network. Because of the downscaling of the input during multiple convolutional layers, this means that

bounding-box map to different sizes in the original input image.

Finally, YOLOv3 uses a new convolutional backbone: Darknet-53. This CNN is larger and has shortcut

connections meaning some outputs skip intermediate layers and serve as inputs for layers further down the

layer stack.

All of this makes YOLOv3 significantly faster and more accurate than the previous versions of YOLO.

When compared to other network architectures, it is still faster but not always as accurate.

YOLOv4

At the time of its release, YOLOv4 was superior to other model architectures in speed and accuracy. This

was achieved by implementing many minor changes. First of all, yet again a new backbone was chosen

(CSPDarknet53). To improve training, different data augmentation techniques were applied. Activation

functions were replaced with a new one named Mish (Misra 2019). There are other changes. However, an

explanation of all of the would go beyond the scope of this thesis. (Bochkovskiy et al. 2020)

YOLOv5

No paper was published for the fifth version of YOLO and there is not one final and official implementation.

Therefore, the naming is somewhat controversial. Information about YOLOv5 is taken from Jiang et al.

(2022, p. 1069).

YOLOv5 is the first version implemented using PyTorch as framework. This offers some usability advance-

ments compared to Darknet. Yet again, it uses a new activation function named Hardswish (Howard et al.

2019, pp. 1317–1318) and applies data augmentation and enhancement (i.e., scaling, color space adjustment

etc.).

Accuracy of YOLOv5 is comparable to that of YOLOv4 while performance is moderately better.

THEORETICAL FOUNDATIONS 44

YOLOv6 and YOLOv7

The newest versions of the YOLO family are version six and version seven. Both versions are a group of

multiple model architectures. Their performance compared to each other in addition to other model archi-

tectures is shown in Figure 33. The fact that this figure including both YOLOv6 and YOLOv7 is provided

in the paper on YOLOv6 suggests that work on YOLOv6 started first, but the release happened after

YOLOv7 was already published. Therefore, explanations will start with YOLOv7 followed by YOLOv6.

YOLOv7 uses a new model architecture based on ELAN (efficient layer aggregation network) and named

efficient ELAN. It implements additional minor changes for the training process. However, these improve-

ments were not invented by the authors of YOLOv7 but adopted from other sources. (Wang et al. 2022)

The main thought behind the invention of model architectures grouped together under the name of YOLOv6

were industrial use cases which have diverse requirements when it comes to speed and accuracy. The mod-

els use different backbones suited for the varying requirements. Among other improvements, some of the

models use quantization. This is the concept of decreasing precision of continuous values by replacing them

with some form of discrete values (Rokh et al. 2022, pp. 2–7). This can make models much more suitable

for certain hardware used in the industry. (Li et al. 2022)

Figure 33. Comparison of version five, six and seven of YOLO and additional model ar-

chitectures. The graph on the left plots AP for the COCO dataset as y-axis and latency as

x-axis. The graph on the right uses the same y-axis but FPS as x-axis. In summary, YOLOv7

outperforms other model architectures for some cases. Except for YOLOv6 which con-

stantly outperforms all other model architectures including YOLOv7.

(Li et al. 2022, p. 1)

45 RELATED WORK

3. Related Work

This chapter summarizes research papers with similar objectives to this thesis. I.e., papers about the detec-

tion of elements of GUIs. Furthermore, it points out similarities and differences.

3.1. “Construction of GUI Elements Recognition Model for AI Test-

ing based on Deep Learning”

C. Zhang et al. (2021) describe a possible way to recognize GUI elements in screenshots taken on a com-

puter running the Windows 10 operating system. The whole dataset consists of 3,000 images, all of which

have been labelled manually. GUI elements are assigned to 10 different classes.

After using this dataset for transfer learning on YOLOv3 and Mask R-CNN, the paper compares the mAP

achieved using YOLOv3 and Mask R-CNN. Mask R-CNN slightly outperforms YOLOv3 with a mAP of

99.985% compared to 98.513% and yields segmentation masks while YOLOv3 only outputs bounding-

boxes and classes. An example can be seen in Figure 34. Judging from the example, bounding-box and

mask detection is quite accurate. Additionally, the paper compares the results after training on a third, two

thirds and the entire dataset. For most classes, AP increased significantly with the number of images used

for training.

The objective of this paper is to provide GUI element recognition usable for automated GUI testing. For

this, it uses YOLOv3 and Mask-RCNN. Insofar, it is quite similar to the goal of this thesis. However, it

uses a desktop operating system (Windows 10) while this thesis uses a mobile operating system (Android).

This results in different GUI elements to look for. Additionally, the datasets used in the paper consists of

screenshots. This thesis uses camera images taken from a screen.

While the objective and the way of labelling the dataset differs, the methodology of using deep learning

and in particular Mask R-CNN to detect and segment elements is a similarity to the approach of this thesis.

Figure 34. Example of results using YOLOv3 (left) and Mask R-CNN (right).

 (C. Zhang et al. 2021)

RELATED WORK 46

3.2. “Detection and Segmentation of Graphical Elements on GUIs

for Mobile Apps Based on Deep Learning”

Hu et al. (2020) use deep learning for the detection and segmentation of GUI elements in mobile applica-

tions. The motivation behind their research is yet again automated testing of GUIs.

The dataset of this paper differs from the one of the previously discussed paper. It is composed of screen-

shots from Google Play, Huawei AppGallery and part of the Rico dataset (Deka et al. 2017), which is a

collection of 72,219 screenshots of mobile applications. The dataset consists of 2,100 screenshots and each

GUI element is assigned to one of 8 classes. The labeling was done manually. In total, 42,156 GUI elements

have been labeled. As model architecture, this paper uses Mask R-CNN. The achieved mAP is 98%. Ap-

pendix A shows visual examples of the results. Here, some bounding-boxes and masks are very accurate

while others are shifted or distorted and do not match the true position of the element. Masks are always

rectangular suggesting that only boxes were used for labeling of the dataset independently of the actual

shape of a GUI element.

In comparison to the previous paper, the paper of Hu et al. (2020) has more similarities with this thesis,

which is trained on android applications and uses the Mask R-CNN framework. Up to this point, there is

no difference between them. This thesis uses a camera image of the mobile device’s screen and automates

dataset generation and labeling. This distinguishes it from the paper of Hu et al. (2020), where screenshots

are used and labels are acquired by manual annotation.

3.3. “Object detection for graphical user interface: old fashioned or

deep learning or a combination?”

In their paper, Chen et al. (2020) study existing attempts at GUI detection. In addition, they propose a new

approach themselves. They do not have a specific goal building upon GUI detection but describe GUI

testing and automation as possible use cases among others.

The dataset used for all their learning and testing consists of 50,524 screenshots of 8,018 android applica-

tions. In total, these contain 923,404 GUI elements.

Chen et al. compare deep learning approaches and old-fashioned approaches using classical CV algorithms

like edge detection for GUI detection. They conclude that old-fashioned approaches are inferior to deep

learning approaches. Old-fashioned approaches work acceptable for simplistic GUIs but get worse with

increased complexity. Of all deep learning approaches, Faster R-CNN performed the best. Still, all of these

have some problems with accurate bounding-box prediction.

47 RELATED WORK

The newly proposed approach by Chen et al. differentiates between GUI elements with and without text

and provides separate detection pipelines for them. Text elements are detected using EAST, which stands

for efficient and accurate scene text detection pipeline (Zhou et al. 2017, p. 5553). It is used for text detec-

tion in natural images (Zhou et al. 2017, p. 5551). For GUI elements without text, the authors use a hybrid

approach with both old-fashioned and deep learning parts. Region detection is performed by a top-down

classical algorithm. Region classification is done by a pretrained ResNet fine-tuned for GUI elements. This

approach yields better performance than Fast R-CNN. Examples of detection for non-text GUI elements

are given in Figure 35. In the examples, bounding-boxes appear to be very accurate. However, the approach

sometimes detects multiple GUI elements as one or parts of one GUI element as individual units.

The main differences between this thesis and the paper from Chen et al. are as follows. This thesis uses an

automatically generated and labeled dataset and masks for detection whereas the paper uses manual labeling

and bounding-boxes only. Additionally, this thesis uses a purely deep learning based approach.

Figure 35. Four examples of non-text GUI detection using the new approach suggested

by the authors of the paper. Edges of bounding-boxes accurately match edges of ele-

ments. Some elements are merged together while others are split into multiple bounding-

boxes.

(Chen et al. 2020, p. 1211)

METHODOLOGY 48

4. Methodology

Chapter 1.2 Objective declares the research question of this thesis as follows: It shall be determined whether

a neural network trained on an automatically generated and labeled dataset captured by camera provides

any advancements in detection of interactive elements of GUIs compared to previous approaches. This

chapter describes the theoretical approach taken to answer this question empirically.

For this, an experimental setup as visualized in Figure 36 is created and later evaluated. The setup consists

of multiple components interacting with each other. A modular design based on client-server architecture

offers the possibility to modify the system and fit it to desired use cases in the future.

To train a neural network, a dataset is needed. As discussed in the Chapter 1.1 Motivation, manual labeling

may have some shortcomings that can be addressed by automatic labeling. Automatic labeling is only pos-

sible if the source code of the application is accessible. Therefore, a mobile application is programmed.

This makes it possible to access all data relevant for the generation and labeling of the dataset. The mobile

application displays randomized GUIs and has some way to provide information about interactive elements

visible in the GUIs.

This is used by a script to generate the dataset. The script creates a datapoint by performing the following

tasks: It captures an image of a mobile device’s screen displaying the randomized GUI of the mobile appli-

cation. Additionally, it communicates with the mobile application to gather class labels and information

about bounding-boxes and masks of interactive elements contained in the GUI. For bounding-boxes and

masks, two possible ways of gathering that information are as follows: Bounding-boxes and masks can be

collected by transmitting their position and shape in abstract form as text via a client-server connection, or

Figure 36. Individual components and their interaction with each other. A mobile applica-

tion provides random GUIs and information about the interactive elements for labeling.

The GUIs are captured by a script that also collects the information about elements. From

this, the script creates a dataset. This can be used for training and evaluation of a neural

network.

49 METHODOLOGY

by altering the GUI and capturing an image of this. For the second approach, the mobile application paints

the entire screen in black except for a single interactive element painted in white. The script for dataset

collection captures an image of this view and converts it into a binary mask. This is repeated for every

interactive element present. After the collection of all relevant information for a datapoint, the mobile ap-

plication creates a newly randomized GUI, and the process is repeated until the whole dataset is populated

with datapoints.

Finally, a neural network is trained on this dataset. The dataset is split into two parts: A training dataset and

a test dataset. The test dataset is kept from the neural network during training. After training, it is used to

evaluate the performance.

There are certain constraints and requirements for the individual components of the setup, which must be

respected during implementation to produce meaningful results:

Since a neural network can only learn patterns present in the given data, the mobile application providing

the data must generate GUIs, that are representative for real-world mobile applications. To achieve this

goal, the randomized GUIs displayed should include interactive elements with varying appearances similar

to those of real-world mobile applications and also as many different styles as possible for every type of

element. One GUI should contain many interactive elements because this results in more training data using

less storage space and memory. Additionally, it must offer an interface to allow access to the following

data: Classes of interactive elements and accurate information about their shape and position. It must also

offer an interface on which the mobile application listens to commands of the dataset collection script. A

possible command would be to demand a new randomized GUI.

The script creating the dataset must capture GUIs and the provided information about the interactive ele-

ments and save all of it in a format that can be understood by the learning algorithm of the neural network.

The dataset must have an appropriate size. It seems reasonable to use a dataset size that is similar to the one

used in related papers to make them comparable and since they prove that this size can yield useful results.

Since the third related paper uses a huge dataset requiring much more processing power, the aim for dataset

size in this paper is to come close the size for the first and second related paper. This requires about 2000-

3000 images. Furthermore, the format of the dataset must be capable to store information about position

and pixel-accurate shape of interactive elements. This could either be the geometrical shape or a binary

pixel mask of the GUI image.

The neural network trained on the resulting dataset should be capable of providing good accuracy on a per-

pixel basis while still running decently fast (I.e., perform detection in well under a second). Otherwise, it

would not be suitable as part for an efficient (robotic) testing framework.

METHODOLOGY 50

For this experiment to answer the research question, it is evaluated and compared to related work as a final

step. The testing part of the dataset is used to deduce numerical metrics as well as provide visual examples

to judge accuracy. To gather more intel about its accuracy on real-world mobile applications, the neural

network is also tested on GUI images of real-world mobile applications. This can only lead to a visual

inspection of a small number of visual examples, since an appropriately-sized dataset for numerical metrics

with per-pixel segmentation does not exist and creating one is not scope of this thesis. Apart from that,

labeling of this dataset would have to be done manually. As discussed, this may produce inaccuracies which

possibly invalidate numerical metrics derived from evaluation on such a dataset.

51 IMPLEMENTATION

5. Implementation

This chapter explains implementation and practical parts of this thesis and their underlying thoughts and

decisions. It follows the order of Chapter 4 for explanation of the components.

Before diving into the implementation of each of the components, it is useful to know about the communi-

cations between the individual components. After this, the mobile application for randomized GUIs and the

scripts for dataset collection are explained. Then, implementation details of the DNN are discussed and

finally the entire practical workflow for dataset collection and training of the DNN is shown.

Apart from the training and test implementation, the DNN needs an interface that lets other applications

access the inference results produced. This has been implemented but is not described as part of this thesis

because it is not required to evaluate the performance of the DNN and therefore not part of the research

objectives.

For the understanding of communications and the components architecture, it must be explained how posi-

tion and shape of interactive elements are supposed to be transmitted to the dataset collection script. In

chapter 4, two ways of transmitting position and shape were presented. It can be done either by sending

position and shape as textual information or by painting an individual element of the GUI white and every-

thing else black, capturing an image of this, and processing this image to acquire a binary mask. The former

approach can only provide positional information in relation to the screen. Because GUIs are not captured

as screenshots but via a camera, this would require access and further processing of the information in

addition to knowledge about the position of the screen in the captured image. These issues can be evaded

by using the latter approach. If processed properly, the resulting binary mask after processing should accu-

rately represent position and shape of an element in relation to the captured image of the GUI. There is

another advantage to this approach. If an element is occluded by another one, the application itself would

calculate the part of the element that is still visible and only display this part in white. Otherwise, this would

also require additional computations. For this approach, images of the GUI itself and of additional screens

each highlighting an individual element are taken one after another.

Back to the communication. The mobile application provides a server to be accessed by the dataset collec-

tion script. This connection allows the script to get information about classes and request state changes of

the mobile application (I.e., new random GUI or black and white mask for an element to be captured by

camera.). The script outputs a dataset in the form of a directory. This directory is used for training of the

DNN. Each datapoint consists of a GUI image, multiple mask images and a data file with class names for

each element. An outline of all communications in order of their execution is illustrated in Figure 37.

IMPLEMENTATION 52

5.1. Android Application

As discussed, the main goal for the mobile application is to obtain randomized GUIs where interactive

elements are representative for those of most real-world mobile applications. Material Design is developed

by Google, used as standard for android applications and adopted by many other developers. Because an-

droid itself has the highest market share for mobile operating systems, using Material Design 3 as base for

GUI design seems logical. One could use multiple design frameworks, but Material Design 3 alone provides

a good compromise between the effort required for implementation and requirements of representative in-

teractive elements.

With Material Design as design framework, the mobile application can be implemented as a native android

application, flutter application or web application. Because of the author’s previous knowledge and famil-

iarity with native android applications and no obvious downsides of using native android as compared to

Figure 37. Outline of communications between components in order of execution. The da-

taset collection script serves as client accessing the mobile application acting as server.

The script orchestrates collection of each datapoint and saves all information in a direc-

tory. For a single datapoint, it starts by requesting a random GUI. Then, it asks for infor-

mation about classes of elements. For every element in the GUI, it requests, captures, and

saved the mask. Afterwards, the DNN uses this directory as dataset for training.

53 IMPLEMENTATION

flutter or web for the task at hand (cross-platform capabilities are not needed for generation of a dataset), a

native android application is chosen for implementation. As result, the code of the mobile application is

written using Kotlin as programming language. GUIs are programmed using Android Compose where ele-

ments of a GUI are expressed as functions annotated with “@composable” in source code.

The architecture of the android application is as follows. A file named MainActivity servers as entry point

and makes use of other files and classes to orchestrate GUI creation, data management and communication.

Class State keeps track of information required for labeling, for rendering of the GUI itself, and for black

and white masks for every element. Class Registry saves class names of all elements. A file named Ran-

domElements contains all functions for generation of random elements. File Probabilities only consists of

probability values used for the generation of random elements. File Utils provides helper functions. All

these classes and files are shown in Figure 38. There are some additional files that mainly serve a single

purpose for files and classes already discussed. Because of this, they are excluded in the figure and will be

explained as part of sections about other files and classes.

File MainActivity

The contents of this file are shown in Figure 39. When the android application is started, it executes the

method onCreate(..) of the class MainActivity. Since all we care about is the application itself and we cannot

make use of a displayed notification bar at the top or a navigation menu at the bottom of the screen (I.e.,

there is no way to produce masks for these and therefore they cannot be used for learning.), this function

hides them. Additionally, it makes sure that the screen never turns off after a certain time of inactivity

Figure 38. Most relevant classes and files of the android application for randomized

GUIs: MainActivity, State, Registry, Utils, Connection, Random Elements, and Probabili-

ties.

Figure 39. Contents of file MainActivity: Class MainActivity and composable function

RandomApp.

IMPLEMENTATION 54

because this would cause the screen to go black during collection of the dataset. Finally, the method calls

the composable function RandomApp(..) that is responsible for displaying the GUI.

This function delegates the creation of most of the randomized elements to composable functions in file

RandomComponents. However, there are some things this function takes care of by itself.

The function creates an instance of class State to keep track of the current state. It overrides a function of

this instance that replaces the instance with a copy of it whenever a change in state occurs. This is necessary

because changing the variable triggers recalculation and rerendering of the GUI. Only then are all GUI

elements automatically updated to represent the new state. More explanation on this will follow in the

section about this class.

Based on some probability defined in file Probabilities, the function sets the theme of the GUI as light or

dark mode. In combination with this, the function uses function randomColorSchemes() defined in an ad-

ditional file named Color to apply a more or less random color schemes to the GUI. This function randomly

selects one out of 10 color schemes, which were created using the Material Theme Builder (Material Theme

Builder n.d.). Here, primary colors were chosen, and all other colors generated by the builder. The colors

of the exported themes were then added to the file Color.

Furthermore, the function RandomApp(..) adds a basic layout to the GUI in which randomized components

can be placed. This layout offers the option for a TopAppBar, a FloatingActionButton, a BottomBar for

navigation, and content filling the center of the screen. The content is populated with two nested columns

that add 13 random elements to the GUI using the composable function RandomIE(..). The number 13 was

chosen because it ensures that most of the screen space is used for random elements, but no overflow is

occurring. Additionally, the columns can display some buttons used for debug purposes if a variable debug

is set. Together, they randomize the look by switching between left, right and centered alignment of content.

Because the contained elements have different widths, this results in diverse positioning of elements. This

is supposed to help make the GUI representative for real-world applications.

Finally, function RandomApp(..) creates an instance of class Connection to open a channel for communi-

cation with the dataset collection script after everything is set up. If there already is an active instance, no

new instance is created but its reference to the application’s state is updated. This is because for every

datapoint a new instance of class State is created and used.

55 IMPLEMENTATION

Class State

Class State keeps track of the current state of the application and enables state changes. For this, it uses

various variables and functions as displayed in Figure 40. GUI elements change their appearance based on

the information provided by this class.

Variable mask decides whether the GUI itself is shown or the mask for a one of the elements (I.e., this

element is painted white and everything else black.). Variable idOfMaskElement contains the ID of the

element whose mask is currently shown. Variable Registry is used to assign IDs to all elements and store

their corresponding classes. More on this in the section about the Class Registry. Variable onStateChanged

has already been touched on in the section about file MainActivity. It stores a function to be executed as

callback whenever a state change occurs.

The first constructor State() is used to create new instances of the class. The second constructor State(..)

serves as copy constructor. I.e., it is used to create a new instance of class State with identical variables to

the instance provided as argument.

Method nextState() contains logic to switch to the state that is supposed to follow the current state. First, it

switches from GUI to masks. Then, it increments the ID of the element whose mask is displayed. In addition,

it triggers the callback function saved in onStateChanged() that replaces the current instance with an iden-

tical one newly created. This is necessary because only then can GUI elements detect this change and adjust

their appearance according to the new state.

Method copy() simply returns an identical instance to the one the function is called on. For this, it uses the

copy constructor.

Figure 40. Content of class State. Shows variables(top) and methods(bottom).

IMPLEMENTATION 56

Class Registry

Contents of class Registry are shown in Figure 41. Variable numOfElements tracks the total number of

interactive elements already created. Variable data uses JSON format to store IDs of elements together with

their class.

Method registerElement(..) adds ID and class to variable data and returns the ID, which is also stored inside

each element for identification during state changes.

File RandomElements

As visible in Figure 42, file RandomElements provides composable functions for all interactive elements

to be displayed. All of them take the applications state as argument because this way they can listen to state

changes and automatically adapt their appearance accordingly.

Figure 41. Variables and methods of class Registry.

Figure 42. All composable functions of file RandomElements.

57 IMPLEMENTATION

The first function RandomIE(..) serves as a wrapper for other interactive elements. It randomly selects one

of the possible elements and displays it. It does this according to a probability distribution provided in file

Probabilities.

All other composable functions mostly work in the same manner. If the application’s state requires the GUI

to be displayed, they show their corresponding element. This is the first possibility. Usually, the appearance

is somewhat randomized. E.g., a button is either displayed as simple text, in a filled box or an outlined box.

If the state requires the mask of an element to be displayed, there are two more possible cases that can occur.

Whenever the ID saved as part of the element matches the ID of the active mask element saved in the

application’s state, the shape of the element is filled with white. Otherwise, it is filled with black. Some of

the functions require text that can be displayed. This functionality is provided by the function randomText(..)

of file Utils and will be discussed further in the section of that file.

Class Connection

Class Connection is responsible for communication with the dataset collection script. As discussed before,

it does so by providing a server the script can connect to as client. It propagates requests to other parts of

the application and responds with requested information. Internals of class Connection are displayed in

Figure 43.

Figure 43. Variables and methods of class Connection.

IMPLEMENTATION 58

The variables port, server, client, input, and output are used for operation of the server. Variables state and

activity are needed for the propagation of requests to their destination.

The constructor starts a server on the specified port. Then, it launches the method listen(). This method

contains most of the logic. In an infinite loop, it does the following. At first, it calls the method establish-

Connection() that waits for a client to connect and establishes communication channels once a client has

connected. Then, it reads the incoming request and processes it. JSON is used as format for all communi-

cations. Requests and Responses always have a header and a body part. For responses, the helper method

sendResponse(..), converts header and potentially body into the required format. The possible requests and

their responses are shown in Figure 44.

If the request is “ready?”, the response tell the dataset collection script that the GUI has finished rendering

and is ready to be captured by camera. If the request is “classes?”, the IDs of all elements and their classes

are sent back as body of the response. If the request is “next state?”, the method nextState() of the variable

state is called before answering with an acknowledgment. As discussed, this method changes the state and

triggers rerendering of the GUI according to the new state. If the request is “randomize?”, an acknowledge-

ment is sent, client connection and server are closed using methods closeClientConnection() and close(),

and the method recreate() is called. The last method causes the instance of class MainActivity used for the

GUI to be destroyed. Then, a new instance is created and its method onCreate(..) is executed effectively

restarting all calculations performed so far resulting in a newly randomized GUI.

The setter method setState(..) and the method isClosed() are used externally to set and get properties of this

class. The former allows the state instance to be replaced in cases where the connection is reused for a new

Figure 44. Possible requests and their responses with header and body.

59 IMPLEMENTATION

randomized GUI. This can happen if the connection is lost, or randomization is triggered from somewhere

else like the button available in debug mode. The latter returns whether the server is still running or not.

File Utils

The internal of file Utils as seen in Figure 45 all provide some support functionality. The first two functions

probToBool(..) and probsToIndex(..) take in probabilities and returns a truth value or a number based on

those probabilities.

Function randomText(..) returns a text that conforms to the restrictions received as parameters. The char-

acters of all words are chosen at random. The first character is always capitalized. The idea behind this

approach is, that interactive elements usually adhere to these criteria. A more sophisticated solution would

be a dictionary of words that are likely to be used but this would require extensive research and many

considerations to provide a more useful text to be displayed in differing types of interactive elements. How-

ever, this approach cannot produce representative text for any language that uses non-Latin characters or

are written from right to left. Also, there might be some hidden underlying pattern to text of interactive

elements that is not present in the dataset when using this approach.

Method onCondition(..) makes the use of conditional modifiers for GUI elements easier because this allows

them to be applied in one line of code.

Function clipIntInclusive(..) should be self-explanatory.

Function randomHorizonalAlignment() return one of the possible alignment types (left, right and center) at

random.

File Probabilities

This file only contains variables storing probabilities for various decisions made during GUI creation. Apart

from being chosen as values that seem like a good fit to the probabilities in real-world applications, there

Figure 45. Functions and methods of file Utils.

IMPLEMENTATION 60

is no deeper underlying concept to them. E.g., apps are more likely to be used in light mode than in dark

mode, or buttons are more often used than text fields.

Visual Results

Some examples of GUIs generated by the application are shown in Figure 46.

5.2. Dataset Collection Scripts using Python

The component for dataset collection must be able to communicate over the network, access a camera and

process the images taken. It must also be able to work with files. All of this can be done using Python with

the OpenCV library (OpenCV 2022) among other libraries. Since the DNN component is also written in

Python (at least the part of it that needs modification), the reusability of some of the code is an additional

advantage when using Python.

To be adaptable to different setups used for dataset collection, the management of collection itself and the

capturing of the mobile application’s screen with the android application is split up into two Python scripts.

Again, the communication works by having the camera act as a service that the managing script can access.

Thus, the camera script starts a server to which the managing script can connect as client and request an

image whenever needed.

Figure 46. Three examples of GUIs generated using the application described above.

61 IMPLEMENTATION

Image Capture Script

This script starts with the initialization of some variables. The IP address and port of the server, and the ID

of the camera to be used are specified.

Because so far, the images for the dataset are not taken in the environment the DNN will be deployed in,

the background surrounding the mobile device does not provide any useful information for the dataset.

Furthermore, the background can interfere with the generation of masks out of the black and white screens

provided by the application. Therefore, the image capture script is responsible for removing the background.

To do this, the capture script displays the view of the camera and lets the user select a color and thresholds

to filter the camera image for that color. This is saved as binary mask that paints everything black except

for the part selected by the user. This part is left as provided by the camera. Ideally, this removes everything

but the screen content from the images.

After this, another view of the camera is displayed. Here, the user can crop the image to remove black areas.

Because masks must be provided as binary image of black and white, this view also lets the user select

another threshold. This threshold is used to paint everything underneath that value black and everything

above it white.

Now, all data necessary is collected and the server can be started. The server listens for connections and

handles them in the following manner. If the request asks for an image, it provides the cropped image of

the screen with black background. If asked for a raw image, it responds with an unedited image of the

camera. If asked for a mask, it answers with a cropped binary mask of the screen by using the threshold

determined earlier to decide what to paint black and what white. To send the images, they are encoded in

the base64 format.

Managing Script

Like the previous script, the managing script starts with the initialization of some variables. These variables

determine dataset size and directory, and IP address and port of the android application as well as the camera

script.

Next, it defines a class named Dataset to handle most operations used in the following main loop. The class

and its variables and methods are shown in Figure 47. The constructor saves size and path of the dataset

and sets the current size to zero. The next four methods handle the connection to the server of the image

capture script and requesting and saving of images and masks. Because of network connectivity issues, they

use quite a small value as timeout to retry connecting frequently. Otherwise, dataset collection would take

much longer when there is a problem with the connection.

IMPLEMENTATION 62

Method saveAnnotations(..) takes in relayed data provided by the android application and saves IDs and

classes of elements as JSON file. Method makeRequest(..) handles connection to the android application.

Finally, an instance of class Dataset is created, and the main loop started. This loop is repeated until the

current dataset size is equal to the desired dataset size.

The loop follows the protocol of Figure 44 shown in the section about the android application. It starts by

asking if the android application is ready. After a short delay, it requests an image of the screen from the

image capture script and saves it. Then, is asks for information about the classes and saves this. For every

element, it asks the application for a mask, waits for a small period, requests an image of the mask from the

image capture script and saves this image. Finally, it requests a new randomized GUI from the android

application and continues from its beginning for the next datapoint.

The small delays were added because without them, the camera sometimes captures a blurry image. We

suspect this to be caused by two problems. First, the GUI may have finished rendering but the camera either

has an internal delay when providing images or simply a quite long exposure time and this results in the

image being a mix of both the current and the previous GUI displayed. Second, big changes of the camera

image trigger refocusing of the camera which also blurs and distorts the image.

5.3. Mask R-CNN

The third component of the implementation is the DNN itself. Different model architectures have been

explained in section 2.7. The YOLO family is very popular and widely used. However, its main advantage

is the detection speed. While detection should not be much slower than real-time to be used in a robotic

testing framework, performances far better than real-time detection do not offer any benefits. The main

bottleneck is most likely going to be the movement speed of the robot.

Figure 47. Variables and methods of class Dataset.

63 IMPLEMENTATION

Because of this, accuracy is much more important as long as detection speed is not unreasonably slow. The

newer model architectures of R-CNN meet this requirement running detection at about 5 FPS. They also

provide good accuracy. But ultimately, detection using bounding-boxes only has two mayor flaws.

First, it cannot properly describe the shape of elements that are not composed of a rectangle. But many

elements consist of different shapes. E.g., buttons can have rounded corners, sliders consist of a line with a

circle indicating the current position, and switches are also more complex.

Second, if the screen captured is tilted or rotated, even rectangular elements are distorted and cannot be

described well using bounding-boxes whose edges are aligned horizontally and vertically. With increasing

rotation of an element, bounding-boxes contain more and more pixels that do not belong to the element.

To fix both issues and be able to detect arbitrary shapes accurately, a binary mask is needed. This is possible

using instance segmentation.

For all reasons stated above, Mask R-CNN was chosen as model architecture. It is fast enough for the use

case at hand, accurate, and performs object detection and instance segmentation.

The specific implementation of Mask R-CNN used in this thesis is provided as GitHub repository by Ab-

dulla (2017). It is implemented in Python using Tensorflow. Its backbone is a feature pyramid network

based on ResNet101 as base. According to the author, the implementation deviates from the official paper

on Mask-RCNN in the following points: Image resizing, bounding-boxes, and learning rate. The points are

explained in more detail in Table 3.

Table 3. Differences between implementation by Abdulla and official paper by He et al. according to Ab-

dulla (2017) .

 Implementation by Abdulla Official paper by He et al.

Image Resizing:

Aspect ratio is kept, and images are

resized to fit inside a square of fixed size.

If an image is not square, remaining pix-

els are filled with black.

All images are resized so that the

smaller side is 800px long. Then, the

larger side is trimmed to be not larger

than 1000px.

Bounding-Boxes:

Generates bounding-boxes by calculating

the smallest box encapsulating the entire

Uses bounding-boxes as provided in da-

tasets.

IMPLEMENTATION 64

masks provided by the dataset for an ob-

ject. This allows image augmentation like

rotation to be applied.

Learning Rate:

Uses learning rate of 0.001 to prevent

weights from getting too large.

Uses learning rate of 0.02.

To train this implementation of Mask R-CNN on the dataset created by the dataset collection script, a

sample script for the detection of geometrical shapes provided with the implementation was modified and

a docker image created that contains all necessary libraries and has access to the GPU. Most modifications

required were made in the classes IEConfig and IEDataset and are covered in the next two sections. After-

wards, some additional implementation details are discussed. IE stands for interactive elements.

IEConfig

The class IEConfig extends the class Config provided by the Mask R-CNN implementation and mainly

contains multiple variables defining parameters used for training. The most important ones are explained

in the following paragraphs.

Variable CLASSES contains all eleven classes occurring in the dataset. Namely, these classes are “Menu”,

“BackButton”, “MoreOptions”, “FloatingActionButton”, “NavigationBarItem”, “Button”, “Checkbox”,

“RadioButton”, “Switch”, “Slider” and “TextField”.

Variable AUGMENTATION contains a class that defines a series of image augmentations to be applied to

the images in the dataset before using them for training. In order, these augmentations are the following.

Rotation and scaling of the input image, changes in contrast, and changes in brightness. Each of them has

a probability of 50% to be applied. It is important that the order is preserved because if contrast or brightness

were to be changed before applying rotation or scaling, the outline of the original image would be visible

(black in the original image would not be black anymore, but black filling missing pixels would be resulting

in visible color difference at image edges).

Variable INIT_WITH is initialized with value “coco”. This tells Mask R-CNN to load pretrained weights

before starting the training. The weights are result of previous training of Mask R-CNN on the COCO

dataset.

65 IMPLEMENTATION

IEDataset

Class IEDataset is responsible for loading and management of the dataset provided by the dataset collection

script. For this, it extends the class Dataset defined in file utils.py of the Mask-RCNN implementation. The

overwritten and added methods are shown in Figure 48 and discussed in the next paragraphs.

Method train_test_split(..) divides a single dataset and returns two distinct portions of it as new datasets

that can be used for training and testing of Mask R-CNN.

Method add_classes() saves all classes given in class Config to the dataset and assigns each of them an ID.

Method load_ie(..) starts by executing method add_classes(). Then, it uses the JSON files to go through

every datapoint. For each of them, it saves a datapoint ID, the common part of the path for all files belonging

to that datapoint, width and height of the input image, and a list of class IDs of all elements present in the

datapoint. For the list of class IDs, it uses method get_index_of_class(..) which returns the ID for a given

class name.

Method load_image(..) uses the ID of an image to load and return the actual image.

Method load_mask(..) loads all masks for a datapoint. They are returned as a three-dimensional array where

the first two dimensions are height and width of the mask of one single element and the third dimension is

the number of masks for all elements of that datapoint.

Additional Implementation Details

Apart from everything discussed so far, the script uses an additional tool named wandb (Weights & Biases

– Developer tools for ML 2022) for tracking of the training. It provides graphs with metrics and summaries

about all runs, which are very helpful. It is used by adding wandb as library and executing some code before

and after training to start and finish tracking.

Figure 48. Methods of class IEDataset.

IMPLEMENTATION 66

5.4. Workflow for Dataset Collection and Training

After having looked into the implementation details of all components from a coding perspective, this sec-

tion provides a different point of view showing the workflow of dataset collection and training of Mask R-

CNN in practice.

For the dataset collection, some setup steps are required. At first, the variables IP, port and debug mode for

the android application are set in the integrated development environment (IDE) and the application is

compile and transferred to a mobile device The device used is a Samsung Galaxy S21 FE 5G running on

version 13 of the android operating system. IP must match the IP of the mobile device in the network used

for communication since it is used to start a server. Debug mode should be enabled for a following step.

Because the mobile device and the camera capturing it should not be moved after starting this process, both

are placed in a secure spot where there is no interference to be expected.

After this, the image capture script is configured. The variables for IP, port and camera ID must be set.

Since this is a server, the IP must match the IP of the computer running the script in the network used for

communication. To create a mask that filters out everything except the screen, the screen of the mobile

device is filled with a distinct color (E.g., opening an image in fullscreen mode that contains only green

pixels.). Now, the image capture script can be started. It will display two windows. One of them can be

used to select the color on the screen by clicking on it and provides sliders to adjust threshold of hue,

saturation, and value. The other window gives feedback by showing the current result of applying the mask

for removal of background surrounding the screen. This is shown in Figure 49.

Figure 49. First window shows image of mobile device with green screen and sliders for

thresholds. Second window shows the resulting binary mask after selecting the screen color

by clicking it and adjusting the sliders.

67 IMPLEMENTATION

When pressing “q”, the currently shown windows are closed and the script continues by opening another

window. This one is used to crop the image to remove unneeded background and to select a threshold value

that will later decide whether to paint a mask pixel black or white. The cropping is done by pressing the

left mouse button when pointing at the upper left corner of the desired rectangle and then pressing the right

mouse button for the lower right corner. This reduces the storage space required for the dataset. The window

before and after cropping is shown in Figure 50.

To decide for a threshold value, the android application was started in debug mode. This way, the applica-

tion’s state can be advanced to display a mask. Now, a threshold is chosen using the image shown in the

window as feedback. Usually, a value in the middle around 124 is a good fit. Again, pressing “q” closes the

window. Finally, the last part of the script is executed starting the server. Figure 51 shows the window with

an appropriately chosen threshold to filter for masks. It also shows the process of converting the raw image

into a binary mask.

Next, the button for turning off debug mode in the android application is pressed. At this points, android

application and image capture script are ready. After entering the required variables IP and port of the

android application and image capture script, and desired dataset size and path, the dataset collection script

is executed. This automatically creates the entire dataset and saves it to the specified path. We used a dataset

Figure 50. Window before and after cropping. Most pixels that are not part of the screen

were removed.

IMPLEMENTATION 68

size of 2000 datapoints. The collection of these datapoints took about 4 hours and 50 minutes. Therefore,

collection speed was roughly 6.9 datapoints per minute. Some examples for datapoints with GUI and masks

of the four classes appearing most often are given in Figure 52.

Figure 51. Window with threshold chosen based on the mask displayed (left). The other

images show the processing applied to the raw image to obtain a binary mask. From left

to right, the following steps are performed: Painting everything black except for the screen.

Applying threshold to generate a binary output which is then inverted and shown in the

image on the right.

Figure 52. Each row represents one datapoint. The first image in a row shows the GUI

captured by camera, which is the input image for training. The following images in each

row display masks of all objects of the four classes appearing most often in the GUI. Each

mask instance is colored in a different shade.

69 IMPLEMENTATION

The script for training of Mask R-CNN is executed next. The dataset is loaded and split into training and

test data. Training data is made up of 80% of the original dataset, which is a common percentage for split-

ting training and test data. As result, the training dataset contains 1600 datapoints and the test dataset con-

tains 400 datapoints.

Finally, the training is started. As suggested by the authors of the Mask R-CNN implementation, training

is started with the backbone fixed. Only the randomly initialized layers not part of the CNN are trained

using a learning rate of 0.001. After this, all layers are fine-tuned using a reduced learning rate of 0.0001.

Because the backbone was trained on images of real-life scenes, we suspect the learned weights to be useful

but not quite ideal for the detection of GUI elements shown on a screen. Therefore, we believe that fixing

these layers can quickly become a limiting factor for learning. To prevent this, training with fixed backbone

is only run for 20 epochs and after this all layers are adjusted during fine-tuning until epoch 150. As shown

later, the graph of the loss functions confirms this hypothesis. After unfreezing all weights, the rate of

improvement increases.

5.5. Problems

This section points out some issues and difficulties that occurred during implementation. While most prob-

lems appeared early in the process and were resolved, some appeared quite late or are still present. Most

notably, those problems are the following:

The quality of the camera available is not ideal. Its resolution is quite low, which is not the main issue

because usually computer vision tasks can be performed well on low resolution data. It is even beneficial

in some way as it increases training speed. However, the camera used also introduces some blur/glare in

images. This is probably caused by the high contrast especially present in the black and white masks.

Another issue cause by the camera was only detected after the collection of the dataset. It seems that even

though there is a delay between the capture of images, the camera sometimes refocuses. This produces

changes in size of the captured scene which in turn resulted in some masks not perfectly fitting the position

and shape of the element inside the GUI. Some examples are shown in Figure 53.

IMPLEMENTATION 70

According to accuracy measures for different datapoint, this issue occurred randomly for some of the data-

points. It did not occur consistently, and the accuracy did not deteriorate over time. It also did not occur

only for light mode or dark mode used in the GUI. This suggests that the issue cannot be fixed by increasing

the delay because then the issue would be expected to show up in all datapoints. Furthermore, it cannot be

caused by changes of lightning conditions during the dataset collection or accidental changes in the physical

setup (E.g., bumping into the camera or mobile device or a slow movement of the camera because of phys-

ical instability of the setup.). This would have resulted in a trend over time. The best guess is that this

refocusing is happening at random and can only be removed by using a different camera.

Another problem occurred when converting masks saved as images back to binary masks. This was discov-

ered after training was finished and therefore training had to be repeated. We expected the images to contain

white and black pixels only. However, compression changed some pixels to grey shades although we ex-

pected the image format (.png) to apply compression in a way that does not do this. Either the format itself

did this or some conversion during processing produced this problem. Because of this, the way of reading

in masks was flawed and had to be adapted. It changes some pixels that are part of a mask to non-mask

pixels.

Because of the way the elements were implemented in Material Design, some elements could not be simply

painted in black to get a mask of their shape. E.g., the radio button either displayed a hollow circle or

painted a bigger rectangle around its shape. Therefore, some tricks were needed to receive a valid and

Figure 53. The two images show GUIs captured overlayed with all their corresponding

masks. In the first image, all masks appear to be scaled down, which makes them smaller

and move towards the center of the image. In the second image, the opposite seems to be

the case. Because each individual mask is taken one after another, this implies that focus

changed only once after taking the GUI image and before taking all mask images.

71 IMPLEMENTATION

accurate mask. In this example, a rounded white border was painted around the black rectangle to get a

circle of the size of the radio button. However, this has the disadvantage that masks of elements behind the

radio button would not be displayed properly because of the white border overlaying the mask. Since this

dataset rarely has interactive elements overlapping each other and since the items occluding other are al-

ways either the FAB or the BottomBar, this is no problem now. However, it must be handled if the feature

of occluded masks was to be used more heavily in a future dataset.

Finally, dataset collection took a long time as mentioned before. Theoretically, this could be improved a lot

by minimizing delays. However, problems with the camera used were the limiting factor. A different cam-

era should allow for a speedup of the process. This in turn would make the generation of large datasets

much more convenient.

EVALUATION 72

6. Evaluation

To judge the performance of the trained DNN, numerical metrics and visual samples are used. At first,

different runs are compared. Afterwards, the DNN is evaluated on the test dataset of this thesis and GUIs

of real-world android applications.

Training was conducted using an Intel i7-4790k as CPU and an Nvidia GeForce RTX 2060 SUPER as GPU

on a machine running Kubuntu 20.04 as operating system. As discussed before, learning rate was 0.001 and

the backbone was frozen for the first 20 epochs. For all other epochs, learning rate was 0.0001 and all layers

were trained. All runs whose loss functions are plotted in Figure 54 show a faster improvement after epoch

20.

This confirms the hypothesis that the backbone trained on real-world sceneries quickly becomes a limiting

factor for GUI recognition if weights are not adjusted. Unfreezing of the backbone could be done even

earlier in the training process.

Figure 54. Plots of loss function for training dataset (top) and test dataset (bottom) for four

runs. Marked in blue is a first test run. Yellow and golden are part one and two of the first

full run with a bug. Grey is a run with bug using only one common class for detection. Red

shows the final run after fixing the bug, which performs visibly better than the other runs.

All runs start with fast improvement that later slows down and eventually plateaus.

73 EVALUATION

Mask Fix and Overfitting

As already mentioned, one issue concerning the loading of masks was fixed after training runs was already

conducted. These previous runs include one first test run with 39 epochs, a full run with 150 epochs (this

run is split in two parts because the program stopped prematurely due to missing disk space) and a run with

20 epochs that used one common class for detection and will be discussed later.

As can be seen in Figure 54, this fix significantly improved the error as measured by the loss functions for

training and test dataset. Furthermore, Figure 54 gives us intel about the ability of the trained DNN to

generalize. For most of the epochs, training and test loss is roughly the same. This indicates good general-

ization. However, training and test loss slowly diverge for the second half of the epochs. Training loss

increases a little bit while test loss gets worse again. At this point, the DNN is starting to slightly overfit on

the training data. This suggests, that the DNN could benefit from a larger dataset. However, the benefit is

probably going to be quite small.

Common Class

Also visible in Figure 54 is the run with one common class. The idea behind the ablation of the DNN was

as follows. Some interactive elements look quite similar. This could cause the DNN to make a decision for

the wrong class which in turn would influence its estimate of bounding-box and mask. If this was the case,

a DNN having only one class would perform better. However, the losses are on par with those of other runs

that were conducted with the mask bug present. This likely means that there is no advantage of using a

common class and that the reasoning was wrong.

Evaluation on Training Dataset of this Thesis

Epoch 60 had the best test loss with a value of 0.36. Therefore, the parameters of that epoch were used for

all further evaluations.

The mAP@IoU=0.5 for the training dataset is 0.97. This is slightly below the value for most related work.

However, it must be noted that they are not directly comparable for multiple reasons. The test dataset is not

the same and our approach uses camera images instead of screenshots. Furthermore, the mAP score is only

a baseline for what is achievable with this approach because of the quality issues caused by the camera.

EVALUATION 74

Figure 55 shows three visual examples of detection performed on the test dataset. The DNN recognizes all

elements and assigns the correct class. Most bounding-boxes and masks look very accurate. However, some

of them slightly deviate from the shape of the element. This especially seems to be the case for elements

where the ratio of width to height is far above one (I.e., elements that are very wide but not tall.). This could

be addressed by adding additional anchor boxes whose shape is closer to that of objects with such an aspect

ratio because currently the aspect ratios for anchor boxes are 1:2, 1:1, and 2:1.

Evaluation on Real-World Android Applications

Using GUIs from the self-written android application for evaluation provides information about how well

the training itself worked. However, it does not give any hints about how well the dataset and with it the

DNN generalizes for real-world applications. A DNN can only discover patterns that are present in the data

it is being fed for training. If the patterns underlying the training data are not representative of real-world

applications, detection result for those can still be much worse than for the test dataset.

Because there is no suitable dataset available to evaluate the performance of the DNN for real-world appli-

cations, we picked sample GUIs from android applications that are popular in the Google Play Store or

frequently used by ourselves. This selection may be biased as we only picked GUIs that do not reveal

sensitive information.

Figure 55. Visual examples of detection results for the test dataset.

75 EVALUATION

Figure 56 shows some of the samples. We picked a range of good and bad detection samples to display.

The sample on the left is being detected quite well. Almost all interactive elements are recognized even

though the switches were detected as buttons. In the middle, some elements are detected but many are

missing. On the right, recognition of the elements of the main content works well. Button and text field

have been identified. But recognition also returned additional results for the main content which are no

interactive elements. For the other areas, multiple elements were thrown together and detected as single

button. Further samples are given in Appendix B. Again, some samples are recognized very well while

others are recognized very poorly. The DNN seems to do well for simple elements. However, it struggles

as elements get more complex. All in all, recognition is definitely working worse than for the test dataset.

Figure 56. Top row shows screenshots of GUIs. Bottom row shows the corresponding de-

tection results.

SUMMARY 76

7. Summary

This thesis investigated the approach of detecting interactive elements in GUIs of mobile applications using

a DNN trained on an automatically generated and labeled dataset. The underlying idea behind this approach

was that manual labeling is time-consuming and inaccurate. Automatic labeling could solve both issues at

once. To evaluate this approach, it was implemented using three components: An android application that

provides randomized GUIs and masks of the interactive elements present in them. Python scripts for cap-

turing of images of the application and collection of a dataset. Mask R-CNN trained on the resulting dataset.

After collecting the training and test dataset and training the DNN, the performance was evaluated on the

test dataset and real-world android applications. Numerical metrics and visual examples produced with the

test dataset were good (mAP@IoU=0.5 of 0.97). However, the approach did not translate equally well to

real-world applications. Often, simple elements were detected well and accurately but more complex ones

were usually missed. Because of this, the approach is so far only of limited use for automatic testing frame-

works.

7.1. Limitations

The results are hard to compare to related papers because of the different ways of capturing the GUI. In

fact, using a camera image of the screen is most likely more challenging. The approach used in this thesis

works good for many interactive elements. Still, detection results are not quite good enough for reliable

detection of many real-world GUIs. There are too many false positive and false negative results.

For the desired use case of robotic testing, false positives may not pose a big problem. Clicking at something

that is not actually clickable does not have any negative effects. Meanwhile, false negatives are a great

problem because every element not detected reduces test coverage. It potentially not only means that this

element is not tested but that elements in GUIs only accessible by interacting with this element are also left

out as they are never shown.

As stated above, more classical interactive elements like a simple button are detected well but many more

complicated interactive elements like multiple lines of text or texts with images are not detected as the

dataset does not contain data on these. This is a problem as many modern applications rely heavily on

interactive elements that vary greatly in shape, size, look, and content.

In part, this may be a problem that cannot really be solved well because even for humans it is often not

directly clear if an element is interactive when only looking at GUIs. Sometimes, a human also needs trial

and error to figure this out.

77 SUMMARY

7.2. Outlook

In this last section, we would like to present some thoughts and ideas for further research that came up

during the writing and implementation of this thesis and that could solve some of the issues discussed above.

First of all, there may be some optimization potential concerning the Mask R-CNN model used. Parameter

tweaking could improve results. As noted before, some masks and bounding-boxes for elements with a

great difference of width and height were not that accurate. This will potentially be solved by adding further

aspect ratios for anchor boxes created to better account for such elements. Next, the DNN detected some

false positives and some false negatives during evaluation. Because detecting false positives is less harmful

and may actually resemble the way a human would approach this task (trial and error with many potential

interactive elements to sort out false positives), the DNN’s confidence thresholds could be reduced. This

way, detection would shift away from detecting many false negatives towards more false positive results.

These could later be filtered out and coverage of true positives would probably increase along the way.

Additionally, we came across a newer model version we did not know of before by Huang et al. (2019)

named Mask Scoring R-CNN, which could replace Mask R-CNN and boost performance.

As second measure, the dataset could be improved in various ways: Either by making it larger or by im-

proving quality of the interactive elements in the GUIs. It could be complemented by a manually labeled

dataset or by implementing additional design frameworks apart from Material Design. The elements already

implemented could also be used to create more complex elements. As touched on in the implementation,

the text generation is biased and could be improved. To get data to closer resemble real-world GUIs, open-

source applications could be adapted for the use in automatic dataset collection and labeling because their

source-code is accessible and enables adaptation.

Next, a camera capturing images with less blur and more consistency could improve accuracy. As a side

effect, images could be captures in faster succession making the approach a better solution for fast dataset

collection and training.

Additionally, we noticed the following: Automatically generated and labeled datasets provide more accu-

rate bounding-boxes and masks but manually labeled datasets are more representative when it comes to the

detection of classes and whether or not there is an interactive element present. This happens due to the fact

that the appearance of interactive elements in real-world applications varies greatly. This variety can hardly

be reproduced in a self-written application. However, manually labeled dataset have access to all these

applications as data. Furthermore, accuracy is not as important for classification and region proposals as

for masks and bounding-boxes. These observations gave rise to the following idea: One could use both

types of datasets for training but only for the parts where the datasets are best at. The manually labeled

datasets would be used for training of classification and region proposal generation by freezing mask and

SUMMARY 78

bounding-box branches. The automatically generated and labeled datasets would be used for the exact op-

posite. They would only train bounding-box and mask branch by freezing the convolutional backbone and

region proposal network. This hybrid training could bring out the strengths of each type of data and improve

overall performance.

Finally, if this DNN is going to be used for detection in a pipeline with other DNNs (E.g., a robotic testing

framework that uses reinforcement learning.), the convolutional backbone could be shared to reduce pa-

rameter count for faster training and inference.

79 APPENDICES

8. Appendices

Appendix A. Example of detection and segmentation results. (Hu et al. 2020)

APPENDICES 80

Appendix B. Further samples of detection on real-world applications.

81 REFERENCES

References

Abdulla, Waleed. 2017. Mask R-CNN for object detection and instance segmentation on Keras and Ten-

sorFlow. https://github.com/matterport/Mask_RCNN. Accessed 5 December 2022.

Alessandro Repici, Matteo Badalamenti, Roberta Maselli, Loredana Correale, Franco Radaelli, Emanuele

Rondonotti, Elisa Ferrara, Marco Spadaccini, Asma Alkandari, Alessandro Fugazza, Andrea An-

derloni, Piera Alessia Galtieri, Gaia Pellegatta, Silvia Carrara, Milena Di Leo, Vincenzo Cra-

viotto, Laura Lamonaca, Roberto Lorenzetti, Alida Andrealli, Giulio Antonelli, Michael Wallace,

Prateek Sharma, Thomas Rosch, and Cesare Hassan. 2020. Efficacy of Real-Time Computer-

Aided Detection of Colorectal Neoplasia in a Randomized Trial. Gastroenterology 159 (2): 512-

520.e7. doi: 10.1053/j.gastro.2020.04.062.

Ansari, Shamshad. 2020. Building computer vision applications using artificial neural networks: With

step-by-step Eeamples in OpenCV and TensorFlow with Python / Shamshad Ansari. Berkeley,

CA: Apress.

Bharati, Puja, and Ankita Pramanik. 2020. Deep Learning Techniques—R-CNN to Mask R-CNN: A Sur-

vey. In Computational Intelligence in Pattern Recognition, 657–668. Springer, Singapore.

Biamonte, Jacob, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. 2017.

Quantum machine learning. Nature 549 (7671): 195–202. doi: 10.1038/nature23474.

Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. New York, NY: Springer New

York.

C. Zhang, T. Shi, J. Ai, and W. Tian. 2021. Construction of GUI Elements Recognition Model for AI

Testing based on Deep Learning. In 2021 8th International Conference on Dependable Systems

and Their Applications (DSA), 508–515. 2021 8th International Conference on Dependable Sys-

tems and Their Applications (DSA). doi: 10.1109/DSA52907.2021.00075.

Chen, Jieshan, Mulong Xie, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming Zhu, and Guoqiang Li.

2020. Object detection for graphical user interface: old fashioned or deep learning or a combina-

tion? In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Confer-

ence and Symposium on the Foundations of Software Engineering, 1202–1214, New York, NY,

USA. New York, NY, USA: ACM. doi: 10.1145/3368089.3409691.

Components – Material Design 3. n.d. https://m3.material.io/components. Accessed 5 December 2022.

Coppola, Riccardo, Emanuele Raffero, and Marco Torchiano. 2016. Automated mobile UI test fragility:

an exploratory assessment study on Android. Proceedings of the 2nd International Workshop on

User Interface Test Automation. 2016/07/21. ACM. doi: 10.1145/2945404.2945406.

Da Silva, Ivan Nunes, Danilo Hernane Spatti, Rogerio Andrade Flauzino, Luisa Helena Bartocci Liboni,

and Silas Franco dos Reis Alves. 2016. Artificial neural networks: A practical course / Ivan

Nunes da Silva, Danilo Hernane Spatti, Rogerio Andrade Flauzino, Luisa Helena Bartocci

Liboni, Silas Franco dos Reis Alves. Switzerland: Springer.

Deka, Biplab, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey Nich-

ols, and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset for Building Data-Driven Design

Applications. In Proceedings of the 30th Annual Symposium on User Interface Software and

Technology, 845–854.

REFERENCES 82

Delia, Lisandro, Nicolas Galdamez, Pablo Thomas, Leonardo Corbalan, and Patricia Pesado. 2015. Multi-

platform mobile application development analysis. In 2015 IEEE 9th International Conference on

Research Challenges in Information Science (RCIS 2015): Athens, Greece, 13-15 May 2015,

181–186. 2015 IEEE 9th International Conference on Research Challenges in Information Sci-

ence (RCIS), Athens, Greece. 5/13/2015 - 5/15/2015. Piscataway, NJ: IEEE. doi:

10.1109/RCIS.2015.7128878.

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale

hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recogni-

tion. IEEE. doi: 10.1109/cvpr.2009.5206848.

Everingham, Mark, Luc van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman. 2010.

The Pascal Visual Object Classes (VOC) Challenge. International Journal of Computer Vision 88

(2): 303–338. doi: 10.1007/s11263-009-0275-4.

Felzenszwalb, Pedro F., and Daniel P. Huttenlocher. 2004. Efficient Graph-Based Image Segmentation.

International Journal of Computer Vision 59 (2): 167–181. doi:

10.1023/B:VISI.0000022288.19776.77.

Felzenszwalb, Pedro F., Ross B. Girshick, David McAllester, and Deva Ramanan. 2010. Object detection

with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 32 (9): 1627–1645. doi: 10.1109/TPAMI.2009.167.

Firtman, Maximiliano. 2010. Programming the Mobile Web. Sebastopol: O'Reilly Media, Inc.

Girshick, Ross. 2015. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV).

2015/12. IEEE. doi: 10.1109/ICCV.2015.169.

Girshick, Ross, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014a. Rich Feature Hierarchies for

Accurate Object Detection and Semantic Segmentation. In 2014 IEEE Conference on Computer

Vision and Pattern Recognition. IEEE. doi: 10.1109/cvpr.2014.81.

Girshick, Ross, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014b. Rich Feature Hierarchies for

Accurate Object Detection and Semantic Segmentation Supplementary Material. https://citese-

erx.ist.psu.edu/viewdoc/download?doi=10.1.1.667.797&rep=rep1&type=pdf.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press.

Haenssle, H. A., C. Fink, R. Schneiderbauer, F. Toberer, T. Buhl, A. Blum, A. Kalloo, A. Ben Hadj Has-

sen, L. Thomas, A. Enk, L. Uhlmann, Christina Alt, Monika Arenbergerova, Renato Bakos, Anne

Baltzer, Ines Bertlich, Andreas Blum, Therezia Bokor-Billmann, Jonathan Bowling, Naira

Braghiroli, Ralph Braun, Kristina Buder-Bakhaya, Timo Buhl, Horacio Cabo, Leo Cabrijan,

Naciye Cevic, Anna Classen, David Deltgen, Christine Fink, Ivelina Georgieva, Lara-Elena Ha-

kim-Meibodi, Susanne Hanner, Franziska Hartmann, Julia Hartmann, Georg Haus, Elti Hoxha,

Raimonds Karls, Hiroshi Koga, Jürgen Kreusch, Aimilios Lallas, Pawel Majenka, Ash Mar-

ghoob, Cesare Massone, Lali Mekokishvili, Dominik Mestel, Volker Meyer, Anna Neuberger,

Kari Nielsen, Margaret Oliviero, Riccardo Pampena, John Paoli, Erika Pawlik, Barbar Rao, Adri-

ana Rendon, Teresa Russo, Ahmed Sadek, Kinga Samhaber, Roland Schneiderbauer, Anissa

Schweizer, Ferdinand Toberer, Lukas Trennheuser, Lyobomira Vlahova, Alexander Wald, Julia

Winkler, Priscila Wölbing, and Iris Zalaudek. 2018. Man against machine: diagnostic perfor-

mance of a deep learning convolutional neural network for dermoscopic melanoma recognition in

comparison to 58 dermatologists. Annals of oncology : official journal of the European Society

for Medical Oncology 29 (8): 1836–1842. doi: 10.1093/annonc/mdy166.

83 REFERENCES

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image

Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

2016/06. IEEE. doi: 10.1109/CVPR.2016.90.

He, Kaiming, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. 2017. Mask R-CNN. 2017 IEEE Inter-

national Conference on Computer Vision (ICCV). 2017/10. IEEE. doi: 10.1109/ICCV.2017.322.

Howard, Andrew, Mark Sandler, Bo Chen, Weijun Wang, Liang-Chieh Chen, Mingxing Tan, Grace Chu,

Vijay Vasudevan, Yukun Zhu, Ruoming Pang, Hartwig Adam, and Quoc Le. 2019. Searching for

MobileNetV3. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE.

doi: 10.1109/iccv.2019.00140.

Hu, Rui, Mingang Chen, Lizhi Cai, and Wenjie Chen. 2020. Detection and Segmentation of Graphical

Elements on GUIs for Mobile Apps Based on Deep Learning, 187–197. International Conference

on Mobile Computing, Applications, and Services. Springer, Cham. doi: 10.1007/978-3-030-

64214-3_13.

IEEE/ISO/IEC International Standard - Software and systems engineering‐Software testing‐Part 4: Test

techniques. IEEE: 1–286.

Introduction - Material Design. n.d. https://www.material.io/design/introduction#principles. Accessed 5

December 2022.

Jamil, Muhammad Abid, Muhammad Arif, Normi Sham Awang Abubakar, and Akhlaq Ahmad. 2016.

Software Testing Techniques: A Literature Review. In 6th International Conference on Infor-

mation and Communication Technology for the Muslim World: ICT4M 2016 : proceedings : 22-

24 November 2016, Jakarta, Indonesia, 177–182. 2016 6th International Conference on Infor-

mation and Communication Technology for The Muslim World (ICT4M), Jakarta, Indonesia.

11/22/2016 - 11/24/2016. Los Alamitos, CA: Conference Publishing Services, IEEE Computer

Society. doi: 10.1109/ICT4M.2016.045.

Jiang, Peiyuan, Daji Ergu, Fangyao Liu, Ying Cai, and Bo Ma. 2022. A Review of Yolo Algorithm De-

velopments. Procedia Computer Science 199:1066–1073. doi: 10.1016/j.procs.2022.01.135.

Jorgensen, Paul C. 2018. Software Testing: A Craftsman’s Approach. CRC Press.

Kong, Pingfan, Li Li, Jun Gao, Timothée Riom, Yanjie Zhao, Tegawendé F. Bissyandé, and Jacques

Klein. 2021. ANCHOR: locating android framework-specific crashing faults. Automated Soft-

ware Engineering 28 (2): 1–31. doi: 10.1007/s10515-021-00290-1.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep con-

volutional neural networks. Communications of the ACM 60 (6). doi: 10.1145/3065386.

Lecun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. 1989.

Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation 1 (4): 541–

551. doi: 10.1162/neco.1989.1.4.541.

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to document

recognition. Proceedings of the IEEE 86 (11): 2278–2324. doi: 10.1109/5.726791.

Li, Chuyi, Lulu Li, Hongliang Jiang, Kaiheng Weng, Yifei Geng, Liang Li, Zaidan Ke, Qingyuan Li,

Meng Cheng, Weiqiang Nie, Yiduo Li, Bo Zhang, Yufei Liang, Linyuan Zhou, Xiaoming Xu,

Xiangxiang Chu, Xiaoming Wei, and Xiaolin Wei. 2022. YOLOv6: A Single-Stage Object Detec-

tion Framework for Industrial Applications. arXiv.

REFERENCES 84

Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,

and C. Lawrence Zitnick. 2014. Microsoft COCO: Common Objects in Context, 740–755. Euro-

pean Conference on Computer Vision. Springer, Cham. doi: 10.1007/978-3-319-10602-1_48.

Lin, Tsung-Yi, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. 2017.

Feature Pyramid Networks for Object Detection. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). IEEE. doi: 10.1109/cvpr.2017.106.

Liu, Hui, and Hee Beng Kuan Tan. 2009. Covering code behavior on input validation in functional test-

ing. Information and Software Technology 51 (2): 546–553. doi: 10.1016/j.infsof.2008.07.001.

Luo, Lu. 2001. Software testing techniques: Technology Maturation and Research Strategy.

Masi, Emiliano, Giovanni Cantone, Manuel Mastrofini, Giuseppe Calavaro, and Paolo Subiaco. 2013.

Mobile Apps Development: A Framework for Technology Decision Making, 64–79. International

Conference on Mobile Computing, Applications, and Services. Springer, Berlin, Heidelberg. doi:

10.1007/978-3-642-36632-1_4.

Material Theme Builder. n.d. https://m3.material.io/theme-builder#/custom. Accessed 5 December 2022.

Mercioni, Marina Adriana, and Stefan Holban. 2020. The Most Used Activation Functions: Classic Ver-

sus Current. In 2020 International Conference on Development and Application Systems (DAS),

141–145. 2020 International Conference on Development and Application Systems (DAS),

Suceava, Romania. 5/21/2020 - 5/23/2020. [S.l.]: IEEE. doi: 10.1109/DAS49615.2020.9108942.

Mitchell, Tom M. 1997. Machine Learning. New York, London: McGraw-Hill.

Moore, Samuel K., David Schneider, and Eliza Strickland. 2021. How Deep Learning Works. IEEE Spec-

trum.

Myers, Glenford J., Corey Sandler, and Tom Badgett (eds.). 2012. The art of software testing, 3rd edn.

Hoboken, N.J.: John Wiley & Sons.

Nass, Michel, Emil Alégroth, and Robert Feldt. 2021. Why many challenges with GUI test automation

(will) remain. Information and Software Technology 138:106625. doi:

10.1016/j.infsof.2021.106625.

Nidhra, Srinivas. 2012. Black Box and White Box Testing Techniques - A Literature Review. Interna-

tional Journal of Embedded Systems and Applications 2 (2): 29–50. doi: 10.5121/ijesa.2012.2204.

OpenCV. 2022. Home - OpenCV. https://opencv.org/. Accessed 5 December 2022.

O'Regan, Gerard. 2019. Concise guide to software testing. Cham, Switzerland: Springer.

O'Shea, Keiron, and Ryan Nash. 2015. An Introduction to Convolutional Neural Networks. arXiv.

Rafi, Dudekula Mohammad, Katam Reddy Kiran Moses, Kai Petersen, and Mika V. Mantyla. 2012. Ben-

efits and limitations of automated software testing: Systematic literature review and practitioner

survey. In 2012 7th International Workshop on Automation of Software Test (AST): Proceedings :

June 2-3, 2012, Zurich, Switzerland, 36–42. 2012 7th International Workshop on Automation of

Software Test (AST), Zurich, Switzerland. 6/2/2012 - 6/3/2012. Piscataway, N.J.: IEEE. doi:

10.1109/IWAST.2012.6228988.

Ready for AI. 2018. The secret of the Chinese team winning the Microsoft COCO Challenge.

https://readyforai.com/article/the-secret-of-the-chinese-team-winning-the-microsoft-coco-chal-

lenge/. Accessed 5 December 2022.

85 REFERENCES

Redmon, Joseph, and Ali Farhadi. 2017. YOLO9000: Better, Faster, Stronger. 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 2017/07. IEEE. doi:

10.1109/CVPR.2017.690.

Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You Only Look Once: Unified,

Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR). 2016/06. IEEE. doi: 10.1109/CVPR.2016.91.

Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun. 2017. Faster R-CNN: Towards Real-Time Ob-

ject Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 39 (6): 1137–1149. doi: 10.1109/tpami.2016.2577031.

Ruiz, A., and Y. W. Price. 2007. Test-Driven GUI Development with TestNG and Abbot. IEEE Software

24 (3): 51–57. doi: 10.1109/MS.2007.92.

Shao, Danhua, Sarfraz Khurshid, and Dewayne E. Perry. 2007. A Case for White-box Testing Using De-

clarative Specifications Poster Abstract. In Testing Academic and Industrial Conference--Prac-

tice And Research Techniques: (TAIC PART 2007) co-located with Mutation 2007 proceedings

10th-14th September, 2007, Cumberland Lodge, Windsor, United Kingdom, 137. Testing: Aca-

demic and Industrial Conference Practice and Research Techniques - MUTATION (TAICPART-

MUTATION 2007), Windsor, UK. 9/10/2007 - 9/14/2007. Los Alamitos Calif.: IEEE Computer

Society. doi: 10.1109/TAIC.PART.2007.36.

StatCounter Global Stats. 2022. Mobile Operating System Market Share Worldwide | Statcounter Global

Stats. https://gs.statcounter.com/os-market-share/mobile/worldwide. Accessed 5 December 2022.

Statista. 2022a. Smartphone users 2026 | Statista. https://www.statista.com/statistics/330695/number-of-

smartphone-users-worldwide/. Accessed 5 December 2022.

Statista. 2022b. Time spent on average on a smartphone in the U.S. 2021 | Statista. https://www.sta-

tista.com/statistics/1224510/time-spent-per-day-on-smartphone-us/. Accessed 5 December 2022.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru

Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions.

2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015/06. IEEE.

doi: 10.1109/CVPR.2015.7298594.

Szeliski, Richard. 2022. Computer Vision: Algorithms and Applications, 2nd edn. Cham: Springer Inter-

national Publishing; Springer.

Uijlings, J. R. R., K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders. 2013. Selective Search for

Object Recognition. International Journal of Computer Vision 104 (2): 154–171. doi:

10.1007/s11263-013-0620-5.

Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. 2022. YOLOv7: Trainable bag-of-

freebies sets new state-of-the-art for real-time object detectors. arXiv.

Weights & Biases – Developer tools for ML. 2022. https://wandb.ai/site. Accessed 5 December 2022.

Yeh, Tom, Tsung-Hsiang Chang, and Robert C. Miller. 2009. Sikuli. In Proceedings of the 22nd annual

ACM symposium on User interface software and technology - UIST '09, 183. the 22nd annual

ACM symposium, Victoria, BC, Canada. 04/10/2009 - 07/10/2009. New York, New York, USA:

ACM Press. doi: 10.1145/1622176.1622213.

REFERENCES 86

Zeiler, Matthew D., and Rob Fergus. 2014. Visualizing and Understanding Convolutional Networks,

818–833. European Conference on Computer Vision. Springer, Cham. doi: 10.1007/978-3-319-

10590-1_53.

Zhang, Aston, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into Deep Learning.

Zhou, Xinyu, Cong Yao, He Wen, Yuzhi Wang, Shuchang Zhou, Weiran He, and Jiajun Liang. 2017.

EAST: An Efficient and Accurate Scene Text Detector. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). IEEE. doi: 10.1109/cvpr.2017.283.

Zohud, Tasnim, and Samer Zein. 2021. Cross-Platform Mobile App Development in Industry: A Multiple

Case-Study. 1727-6209 46–54. doi: 10.47839/ijc.20.1.2091.

87 ASSERTION

Assertion

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel vollständig und

genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit

Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis

in der jeweils gültigen Fassung beachtet zu haben.

Karlsruhe, December 9, 2022 Benjamin Meyjohann

	Table of Contents
	List of Abbreviations
	List of Figures
	List of Tables
	1. Introduction
	1.1. Motivation
	1.2. Objective
	1.3. Structure

	2. Theoretical Foundations
	2.1. Mobile Applications
	2.2. Material Design
	2.3. Software Testing
	Black Box and White Box Testing
	Software Testing Types
	Code Coverage
	Mobile Testing and GUI Testing

	2.4. Computer Vision
	2.4.1. Image Recognition
	2.4.2. Selective Search

	2.5. Machine Learning
	2.5.1. Support Vector Machine

	2.6. Deep Learning
	2.6.1. Multilayer Perceptrons
	2.6.2. Optimization
	Loss function
	Backpropagation
	Learning Algorithms
	Hardware
	Methods for Faster/Better Results
	Example in Two Dimensions

	2.6.3. Convolutional Neural Networks
	2.6.4. Metrics
	Precision
	Recall
	Accuracy
	Intersect over Union (IoU)
	Precision-Recall-Curve
	Average Precision (AP) and Mean Average Precision (mAP)

	2.7. Deep Neural Networks for Object Detection and Instance Segmentation
	2.7.1. R-CNN Family
	R-CNN
	Discussion of Figure 24 (right) and its Source
	Fast R-CNN
	Faster R-CNN

	2.7.2. Mask R-CNN
	Model Architecture

	2.7.3. YOLO Family
	YOLOv1
	YOLOv2
	YOLO9000
	YOLOv3
	YOLOv4
	YOLOv5
	YOLOv6 and YOLOv7

	3. Related Work
	3.1. “Construction of GUI Elements Recognition Model for AI Testing based on Deep Learning”
	3.2. “Detection and Segmentation of Graphical Elements on GUIs for Mobile Apps Based on Deep Learning”
	3.3. “Object detection for graphical user interface: old fashioned or deep learning or a combination?”

	4. Methodology
	5. Implementation
	5.1. Android Application
	File MainActivity
	Class State
	Class Registry
	File RandomElements
	Class Connection
	File Utils
	File Probabilities
	Visual Results

	5.2. Dataset Collection Scripts using Python
	Image Capture Script
	Managing Script

	5.3. Mask R-CNN
	IEConfig
	IEDataset
	Additional Implementation Details

	5.4. Workflow for Dataset Collection and Training
	5.5. Problems

	6. Evaluation
	Mask Fix and Overfitting
	Common Class
	Evaluation on Training Dataset of this Thesis
	Evaluation on Real-World Android Applications

	7. Summary
	7.1. Limitations
	7.2. Outlook

	8. Appendices
	References
	Assertion

